【51nod1220】约数之和
题目
d(k)表示k的所有约数的和。d(6) = 1 + 2 + 3 + 6 = 12。
定义S(N) = ∑1<=i<=N ∑1<=j<=N d(i*j)。
例如:S(3) = d(1) + d(2) + d(3) + d(2) + d(4) + d(6) + d(3) + d(6) + d(9) = 59,S(1000) = 563576517282。
给出正整数N,求S(N),由于结果可能会很大,输出Mod 1000000007(10^9 + 7)的结果。
分析
分开处理每个质因子,于是\(d(i*j)=\sum_{p|i}\sum_{q|j}\dfrac{iq}{p}[gcd(p,q)=1]\)
\]
上一波反演,
\]
\]
\]
\]
考虑处理\(\sum_{q=1}^{\lfloor\frac{n}{d}\rfloor}{\dfrac{\lfloor\dfrac{n}{dp}\rfloor(\lfloor\dfrac{n}{dp}\rfloor+1)}{2}}\)
用\(n\)代替\(\lfloor\dfrac{n}{d}\rfloor\)
即
\]
\]
\]
\]
\]
于是对于两层\(\sum\)都分块处理
类似与【51nod 2026】Gcd and Lcm,可以用杜教筛处理\(\mu(d)d\)的前缀和。
对于\(\sum_{j=1}^{n}j\lfloor\dfrac{n}{j}\rfloor\),直接上分块。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const long long mo=1e9+7;
const int lim=1e5+7;
const int N=10000005;
using namespace std;
#define sqr(x) (1ll*(x)*(x)%mo)
#define val(x,y) (1ll*(y-x+1)*(x+y)/2%mo)
int p[N],mu[N],n,ha[lim+5][2],s[N],ans;
bool bz[N];
int get(int v)
{
int x;
for(x=v%lim;ha[x][0] && ha[x][0]!=v;(++x)-=x>=lim?lim:0);
return x;
}
int S(int m)
{
if(m<=N-5) return s[m];
int pos=get(m);
if(ha[pos][0]) return ha[pos][1];
ha[pos][0]=m;
int la=0,sum=0;
for(int i=2;i<=m;i=la+1)
{
la=m/(m/i);
sum=(1ll*sum+1ll*val(i,la)*S(m/i))%mo;
}
return ha[pos][1]=(1-sum+mo)%mo;
}
int main()
{
scanf("%d",&n);
mu[1]=s[1]=1;
for(int i=2;i<=N-5;i++)
{
if(!bz[i]) mu[p[++p[0]]=i]=-1;
s[i]=(s[i-1]+mu[i]*i+mo)%mo;
for(int j=1,k;j<=p[0] && (k=i*p[j])<=N-5;j++)
{
bz[k]=true;
if(i%p[j]==0) break;
mu[k]=-mu[i];
}
}
int la=1;
for(int i=1;i<=n;i=la+1)
{
la=n/(n/i);
int last=1,nn=n/i,sum=0;
for(int j=1;j<=nn;j=last+1)
{
last=nn/(nn/j);
sum=(1ll*sum+1ll*(val(j,last))*(nn/j))%mo;
}
ans=(1ll*ans+1ll*(S(la)-S(i-1)+mo)*sqr(sum))%mo;
}
printf("%d",ans);
}
【51nod1220】约数之和的更多相关文章
- 51nod1220 约数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1220 $G(n)=\sum\limits_{i=1}^n\sum\lim ...
- [51nod1220] 约数之和(杜教筛+莫比乌斯反演)
题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...
- 51NOD 1220 约数之和 [杜教筛]
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...
- 【动态规划】mr359-最大公约数之和
[题目大意] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入一个正整数S. 输出最大的约数之和. 样例输入 Sample Input 11 样例输出 Sample ...
- 51Nod 约数之和
1220 约数之和 题目来源: Project Euler 基准时间限制:3 秒 ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
- [51Nod 1220] - 约数之和 (杜教筛)
题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑nj=1∑nd(ij) 题目分析 ...
- POJ1845Sumdiv题解--约数之和
题目链接 https://cn.vjudge.net/problem/POJ-1845 分析 \(POJ\)里的数学题总是这么妙啊 首先有一个结论就是\(A=\prod{ \ {p_i}^{c_i} ...
- ZZNU 正约数之和
#include<stdio.h> #include<string.h> #include<math.h> #include<time.h> #incl ...
随机推荐
- TensorFlow自编码器(AutoEncoder)之MNIST实践
自编码器可以用于降维,添加噪音学习也可以获得去噪的效果. 以下使用单隐层训练mnist数据集,并且共享了对称的权重参数. 模型本身不难,调试的过程中有几个需要注意的地方: 模型对权重参数初始值敏感,所 ...
- 【VS开发】关于SEH的简单总结
尽管以前写过一篇SEH相关的文章<关于SEH的简单总结>, 但那真的只是皮毛,一直对Windows异常处理的原理似懂非懂, 看了下面的文章 ,一切都豁然开朗. 1997年文章,Windo ...
- 使用PowerShell 将用户添加至用户组
执行环境:Windows Server 2012 R2 语法 net localgroup 用户组名称 用户名 /add eg. net localgroup administrators myboo ...
- linux 三剑客之sed常用总结
sed 列出5-7行 [root@www ~]# nl /etc/passwd | sed -n '5,7p' -n不在处理前打印,搜索root,/p打印 nl /etc/passwd | sed ' ...
- layui自定义插件citySelect 省市区三级联动选择
省市区三级菜单联动插件 citySelect.js /** * @ name : citySelect 省市区三级选择模块 * @ Author: aggerChen * @ version: 1.0 ...
- 给网页中的button加动画效果
网页中的很多事件交互都是通过点击页面中的按钮来实现的,给按钮加一点动画效果也会让网页看起来生动一些,以下就是一个简单的例子: 此按钮的动画主要是通过css的transform动画,伪元素,伪类来实现: ...
- java各种jar的下载地址和源码下载地址
1.jboss http://jbossmarshalling.jboss.org/downloads2.netty https://netty.io/downloads.html3.spring h ...
- LintCode 64---合并排序数组
public class Solution { /* * @param A: sorted integer array A which has m elements, but size of A is ...
- 浏览器行为:Form表单提交
1.form表单常用属性 1 2 3 4 action:url 地址,服务器接收表单数据的地址 method:提交服务器的http方法,一般为post和get name:最好好吃name属性的唯一性 ...
- centos7网络配置脚本
如下参数根据实际情况修改 #!/bin/bash #设置网络环境 sed -i -e 's|BOOTPROTO=dhcp|BOOTPROTO=static|' /etc/sysconfig/netwo ...