3486 ( Interviewe )RMQ
YaoYao decides to make the interview as follows. First he queues the interviewees according to their coming order. Then he cuts the queue into m segments. The length of each segment is , which means he ignores the rest interviewees (poor guys because they comes late). Then, each segment is assigned to an interviewer and the interviewer chooses the best one from them as the employee.
YaoYao’s idea seems to be wonderful, but he meets another problem. He values the ability of the ith arrived interviewee as a number from 0 to 1000. Of course, the better one is, the higher ability value one has. He wants his employees good enough, so the sum of the ability values of his employees must exceed his target k (exceed means strictly large than). On the other hand, he wants to employ as less people as possible because of the high salary nowadays. Could you help him to find the smallest m?
In the first line of each case, there are two numbers n and k, indicating the number of the original people and the sum of the ability values of employees YaoYao wants to hire (n≤200000, k≤1000000000). In the second line, there are n numbers v1, v2, …, vn (each number is between 0 and 1000), indicating the ability value of each arrived interviewee respectively.
The input ends up with two negative numbers, which should not be processed as a case.
7 100 7 101 100 100 9 100 100 110 110
-1 -1
We need 3 interviewers to help YaoYao. The first one interviews people from 1 to 3, the second interviews people from 4 to 6,
and the third interviews people from 7 to 9. And the people left will be ignored. And the total value you can get is 100+101+100=301>300.
题解 : RMQ
C++代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 200000 +9
#define MAXE 22
int h[MAXN],mmax[MAXN][MAXE];
int N,Q;
int L,R;
void RMQ_ST(){
for(int i=;i<=N;i++){
mmax[i][]=h[i]; }
int end_j=log(N+0.0)/log(2.0);
int end_i;
for(int j=;j<=end_j;j++){
end_i=N+-(<<j);
for(int i=;i<=end_i;i++){
mmax[i][j]=max(mmax[i][j-],mmax[i+(<<(j-))][j-]);
// mmin[i][j]=min(mmin[i][j-1],mmin[i+(1<<(j-1))][j-1]);
}
}
}
int QueryMax(int L,int R){ int k=log(R-L+1.0)/log(2.0);
return max(mmax[L][k],mmax[R-(<<k)+][k]);
} int main(){
while(~scanf("%d%d",&N,&Q)&&(N > || Q > )){
int maxx = ;
for(int i=;i<=N;i++){
scanf("%d",&h[i]);
maxx = max(h[i],maxx);
}
int m = ; RMQ_ST();
m = Q / maxx; int flag = ;
if(m == ) {
m = ;
flag = ;
goto out ;
}
for(;m <= N; m ++){
int res = ;
int sss = ; int s = N / m;
int i = ;
int j = m;
while(j--){
res += QueryMax(i ,i + s- );
i += s;
}
if(res > Q) {
flag = ;
break;
}
}
out :
if(!flag) printf("-1\n");
else
cout << m << endl; } return ;
}
3486 ( Interviewe )RMQ的更多相关文章
- hdu 3486 Interviewe (RMQ+二分)
Interviewe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 3486 Interviewe RMQ
题意: 将\(n\)个数分成\(m\)段相邻区间,每段区间的长度为\(\left \lfloor \frac{n}{m} \right \rfloor\),从每段区间选一个最大值,要让所有的最大值之和 ...
- HDOJ 3486 Interviewe
人生中第一次写RMQ....一看就知道 RMQ+2分但是题目文不对题....不知道到底在问什么东西....各种WA,TLE,,RE...后就过了果然无论错成什么样都可以过的,就是 上层的样例 啊 I ...
- HDU 3486 Interviewe
题目大意:给定n个数的序列,让我们找前面k个区间的最大值之和,每个区间长度为n/k,如果有剩余的区间长度不足n/k则无视之.现在让我们找最小的k使得和严格大于m. 题解:二分k,然后求RMQ检验. S ...
- hdu 3484 Interviewe RMQ+二分
#include <cstdio> #include <iostream> #include <algorithm> using namespace std; + ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- hdu图论题目分类
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
- HDU图论题单
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
- [数据结构]RMQ问题小结
RMQ问题小结 by Wine93 2014.1.14 1.算法简介 RMQ问题可分成以下2种 (1)静态RMQ:ST算法 一旦给定序列确定后就不在更新,只查询区间最大(小)值!这类问题可以用倍增 ...
随机推荐
- 【NOIP2016提高A组8.12】总结
惨败!!!! 第一题是一道神奇的期望问题. 第二题,发现"如果两个部门可以直接或间接地相互传递消息(即能按照上述方法将信息由X传递到Y,同时能由Y传递到X),我们就可以忽略它们之间的花费&q ...
- 微信小程序-wxml-空格
必须要在<text>标签中 先在标签中写decode="{{true}}"然后 就代表空格了 占一个中文字符
- React native 平时积累笔记
常用插件: react-native-check-box 复选框react-native-sortable-listview 列表拖拽排序 react-native-doc-viewer 预览组件 r ...
- tarjan相关模板
感性理解: o(* ̄︶ ̄*)o ^_^ \(^o^)/~ 1. 当根节点有大于两个儿子时,割掉它,剩下的点必然不联通(有两个强连通分量),则他为割点. 那么对于非根节点,在无向图G中,刚且仅当点u存 ...
- CodeForces 1198D 1199F Rectangle Painting 1
Time limit 1000 ms Memory limit 262144 kB 解题思路 一堆循环嵌套的那种dp,不好想.但是可以搜啊,很暴力的.记忆化一下就好. 我们定义搜索函数\(\text{ ...
- 解决:使用ajax验证登录信息返回前端页面时,当前整个页面刷新。
源代码如下: function loginform(){ $.ajax({ url:"loginValidate.do", type:'post', data:{"nam ...
- POJ 1385 Lifting the Stone (多边形的重心)
Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...
- [CSP-S模拟测试]:毛三琛(随机化+二分答案)
题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...
- Java基础数据类型小结
1. 记忆中的数据类型: 记忆中java一共有八种基础数据:boolean,byte,char,int,long,float,double,还有一种记不起来. 他们的长度分别为: 他们的用处 ...
- ORACLE DG临时表空间管理
实施目标:由于磁盘空间不足,将主库的临时表空间修改位置 standby_file_management 管理方式:AUTO SQL> show parameter standby_file NA ...