3486 ( Interviewe )RMQ
YaoYao decides to make the interview as follows. First he queues the interviewees according to their coming order. Then he cuts the queue into m segments. The length of each segment is

YaoYao’s idea seems to be wonderful, but he meets another problem. He values the ability of the ith arrived interviewee as a number from 0 to 1000. Of course, the better one is, the higher ability value one has. He wants his employees good enough, so the sum of the ability values of his employees must exceed his target k (exceed means strictly large than). On the other hand, he wants to employ as less people as possible because of the high salary nowadays. Could you help him to find the smallest m?
In the first line of each case, there are two numbers n and k, indicating the number of the original people and the sum of the ability values of employees YaoYao wants to hire (n≤200000, k≤1000000000). In the second line, there are n numbers v1, v2, …, vn (each number is between 0 and 1000), indicating the ability value of each arrived interviewee respectively.
The input ends up with two negative numbers, which should not be processed as a case.
7 100 7 101 100 100 9 100 100 110 110
-1 -1
We need 3 interviewers to help YaoYao. The first one interviews people from 1 to 3, the second interviews people from 4 to 6,
and the third interviews people from 7 to 9. And the people left will be ignored. And the total value you can get is 100+101+100=301>300.
题解 : RMQ
C++代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 200000 +9
#define MAXE 22
int h[MAXN],mmax[MAXN][MAXE];
int N,Q;
int L,R;
void RMQ_ST(){
for(int i=;i<=N;i++){
mmax[i][]=h[i]; }
int end_j=log(N+0.0)/log(2.0);
int end_i;
for(int j=;j<=end_j;j++){
end_i=N+-(<<j);
for(int i=;i<=end_i;i++){
mmax[i][j]=max(mmax[i][j-],mmax[i+(<<(j-))][j-]);
// mmin[i][j]=min(mmin[i][j-1],mmin[i+(1<<(j-1))][j-1]);
}
}
}
int QueryMax(int L,int R){ int k=log(R-L+1.0)/log(2.0);
return max(mmax[L][k],mmax[R-(<<k)+][k]);
} int main(){
while(~scanf("%d%d",&N,&Q)&&(N > || Q > )){
int maxx = ;
for(int i=;i<=N;i++){
scanf("%d",&h[i]);
maxx = max(h[i],maxx);
}
int m = ; RMQ_ST();
m = Q / maxx; int flag = ;
if(m == ) {
m = ;
flag = ;
goto out ;
}
for(;m <= N; m ++){
int res = ;
int sss = ; int s = N / m;
int i = ;
int j = m;
while(j--){
res += QueryMax(i ,i + s- );
i += s;
}
if(res > Q) {
flag = ;
break;
}
}
out :
if(!flag) printf("-1\n");
else
cout << m << endl; } return ;
}
3486 ( Interviewe )RMQ的更多相关文章
- hdu 3486 Interviewe (RMQ+二分)
Interviewe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 3486 Interviewe RMQ
题意: 将\(n\)个数分成\(m\)段相邻区间,每段区间的长度为\(\left \lfloor \frac{n}{m} \right \rfloor\),从每段区间选一个最大值,要让所有的最大值之和 ...
- HDOJ 3486 Interviewe
人生中第一次写RMQ....一看就知道 RMQ+2分但是题目文不对题....不知道到底在问什么东西....各种WA,TLE,,RE...后就过了果然无论错成什么样都可以过的,就是 上层的样例 啊 I ...
- HDU 3486 Interviewe
题目大意:给定n个数的序列,让我们找前面k个区间的最大值之和,每个区间长度为n/k,如果有剩余的区间长度不足n/k则无视之.现在让我们找最小的k使得和严格大于m. 题解:二分k,然后求RMQ检验. S ...
- hdu 3484 Interviewe RMQ+二分
#include <cstdio> #include <iostream> #include <algorithm> using namespace std; + ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- hdu图论题目分类
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
- HDU图论题单
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
- [数据结构]RMQ问题小结
RMQ问题小结 by Wine93 2014.1.14 1.算法简介 RMQ问题可分成以下2种 (1)静态RMQ:ST算法 一旦给定序列确定后就不在更新,只查询区间最大(小)值!这类问题可以用倍增 ...
随机推荐
- vue-element添加修改密码弹窗
1.新建修改密码vue文件CgPwd.vue 代码如下: <template> <!-- 修改密码界面 --> <el-dialog :title="$t('c ...
- SweetAler弹框插件与分页器插件
目录 SweetAlert插件 自定义分页器 使用Django向数据库批量插入数据 自定义分页器的思路 自定义分页器组件 SweetAlert插件 sweetalert是一款基于Bootstrap的专 ...
- 移动端300ms兼容问题(移动端经典问题)
移动端300ms延迟原因 2007 年初.苹果公司在发布首款 iPhone 前夕,遇到一个问题:当时的网站都是为大屏幕设备所设计的.于是苹果的工程师们做了一些约定,应对 iPhone 这种小屏幕浏览桌 ...
- mysql 语句积累
show tables; 显示表 DROP TABLE IF EXISTS emp;删除表
- 如何在MySQL中使用explain查询SQL的执行计划?
1.什么是MySQL执行计划 要对执行计划有个比较好的理解,需要先对MySQL的基础结构及查询基本原理有简单的了解. MySQL本身的功能架构分为三个部分,分别是 应用层.逻辑层.物理层,不只是MyS ...
- POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )
题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 : 原始模型 ==> 题意和本题差不多,有添和删但是并无代价 ...
- HDU 4027 Can you answer these queries? (线段树成段更新 && 开根操作 && 规律)
题意 : 给你N个数以及M个操作,操作分两类,第一种输入 "0 l r" 表示将区间[l,r]里的每个数都开根号.第二种输入"1 l r",表示查询区间[l,r ...
- 【PowerOJ1737&网络流24题】太空飞行计划问题(最小割)
题意: 思路: #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned in ...
- IIS发布mvc网站需操作的内容
VS2010 WEB部署,先在IIS中创建站点,站点创建需注意以下的内容,创建完成后点击[发布]---[WEB部署]--[发布]. 在IIS7下部署MVC已经简化了许多,基本按照一般的项目部署即可,下 ...
- Java数据结构之单链表
这篇文章主要讲解了通过java实现单链表的操作,一般我们开始学习链表的时候,都是使用C语言,C语言中我们可以通过结构体来定义节点,但是在Java中,我们没有结构体,我们使用的是通过类来定义我们所需要的 ...