UVa 11806 Cheerleaders (容斥原理+二进制表示状态)
In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M N rectangular grid. The constraints for placing cheerleaders
are described below:
There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
There can be at most one cheerleader in a cell.
All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The rst line of input contains a positive integer T 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 M,
N 20 and K 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will rst contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2
给你一个n*m大的操场,上面站上k个啦啦队元,每个格子最多站1人,规定第一行,最后一行,第一列,最后一列必须站有队员。一共多少种方法。
这个题首先感觉是分类讨论,但是在计数的时候还是有些困难。那么从对立面开始思考呢?假如要求是第一行、列,最后一行、列不占人的话,那不就是很简单的C(x,y)的组合数问题了。
现在我们第一行不站拉拉队员的状态为A。最后一行不站拉拉队员的状态为B。第一列不站拉拉队员状态为C。最后一列不站拉拉队员的站立状态为D。
总情况为sum=C(m*n,k),根据容斥原理
那么我要的结果ans=sum-[(A+B+C+D)-(AB+AC+AD+AC+BC+BD+CD)+(ABC+ABD+BCD)-(ABCD)]
下面这个容斥原理怎样实现呢?用二进制表示ABCD 4个状态是否取到,sum->0,A->1,B->2,C->4,D->8,AC->3,ABCD->15。这样分成了16种状态
#include <bits/stdc++.h> using namespace std;
#define M 505
const int mod =;
long long int c[M][M];
void init()//用递推公式来写组合数
{
memset(c,,sizeof c);
c[][]=;
for(int i=;i<M;++i)
{
c[i][]=c[i][i]=;
for (int j=;j<i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%mod;//注意取模
}
}
int main()
{
init();
int t;
scanf("%d",&t);
int casee=;
while (t--)
{
int n,m,k;
long long int sum=;
scanf("%d%d%d",&n,&m,&k);
for (int s=;s<;++s)
{
int r=n,c1=m,bin=;//bin来表示二进制状态
if (s&){r--;bin++;}
if (s&){r--;bin++;}
if (s&){c1--;bin++;}
if (s&){c1--;bin++;}
if (bin&)//激活状态为奇数
sum=(sum+mod-c[r*c1][k])%mod;//减法取模这样写
else
sum=(sum+c[r*c1][k])%mod;
}
printf("Case %d: ",++casee);
printf("%lld\n",sum);
}
return ;
}
UVa 11806 Cheerleaders (容斥原理+二进制表示状态)的更多相关文章
- UVA 11806 Cheerleaders (容斥原理)
题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- uva 11806 Cheerleaders
// uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...
- UVA - 11806 Cheerleaders (容斥原理)
题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...
- UVA 11806 Cheerleaders (组合+容斥原理)
自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...
- UVA 11806 Cheerleaders (容斥原理
1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...
- UVa 11806 Cheerleaders (数论容斥原理)
题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...
- 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders
http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...
- UVa 11806 - Cheerleaders (组合计数+容斥原理)
<训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...
随机推荐
- php strtolower()函数 语法
php strtolower()函数 语法 作用:把所有字符转换为小写.大理石量具 语法:strtolower(string) 参数: 参数 描述 string 必须,规定要转换的字符串 说明:str ...
- paper 168: 2018-FATTEN 论文解析-feature space transfer for data augmentation
paper download:https://arxiv.org/abs/1801.04356 本文的核心就是使用GAN网络生成新的数据. 这个总体框图,常规结构,具体是通过在appearance和p ...
- flutter网格布局之GridView组件
前面总结了使用ListView来实现列表,但是,有的时候,数据量很大,需要使用矩阵方式排列才能更清晰的展示数据,在flutter中,可以使用网格列表组件GridView来实现这个布局. GridVie ...
- hdu 5181 numbers——思路+区间DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...
- [NOIP模拟20]题解
来自达哥的问候…… A.周 究级难题,完全不可做QAQ #include<cstdio> #include<iostream> #include<cstring> ...
- CSS定位,转载的
转自:http://www.cnblogs.com/jiqing9006/archive/2012/07/26/2610586.html 层级关系为:<div ——————————— posit ...
- arcpy 常用操作
目录: 通用操作 条件函数 前提: import arcpy from arcpy.sa import * 1.通用操作 设置工作路径:arcpy.env.workspace("path_o ...
- (四)添加yaffs2文件系统支持
1. 获取yaffs2源码 在linux工作目录下进行clone操作: git clone git://www.aleph1.co.uk/yaffs2 完成后会在当前目录下产生yaffs2的源码目录: ...
- 如何录制视频生成GIF动态图?
前言 在分享文章时有些知识不好讲清,就打算用gif图来展示,可是在网上找了几个录视频的工具都要会员才可以生成gif动态图,很是郁闷,不过苦苦寻找后,发现LICEcap很好用,可以很方便的生成gif动态 ...
- 私有IP地址
私有IP地址: 在ABC三类网络中,如下三段网络地址为私有IP地址,如何人都可以自行在自己的局域网中使用这些IP地址. A类私有:10.0.0.1----10.255.255.254 B类私有:172 ...