Logistics回归:实战,有两个特征X0,X1.100个样本,进行Logistics回归

1.导入数据

 def load_data_set():
"""
加载数据集
:return:返回两个数组,普通数组
data_arr -- 原始数据的特征
label_arr -- 原始数据的标签,也就是每条样本对应的类别
"""
data_arr=[]
label_arr=[]
f=open('TestSet.txt','r')
for line in f.readlines():
line_arr=line.strip().split()
#为了方便计算,我们将x0的值设为1.0,也就是在每一行的开头添加一个1.0,作为x0
data_arr.append([1.0,np.float(line_arr[0]),np.float(line_arr[1])])
label_arr.append(int(line_arr[2]))
return data_arr,label_arr

2. Logistics回归梯度上升优化算法

 def sigmoid(x):
return 1.0/(1+np.exp(-x)) def grad_ascent(data_arr,class_labels):
"""
梯度上升法,其实就是因为使用了极大似然估计,这个大家有必要去看推导,只看代码感觉不太够
:param data_arr: 传入的就是一个普通的数组,当然你传入一个二维的ndarray也行
:param class_labels: class_labels 是类别标签,它是一个 1*100 的行向量。
为了便于矩阵计算,需要将该行向量转换为列向量,做法是将原向量转置,再将它赋值给label_mat
:return:
"""
data_mat=np.mat(data_arr)
#变成矩阵之后进行转置
label_mat=np.mat(class_labels).transpose()
#获得数据的样本量和特征维度数
m,n=np.shape(data_mat)
#学习率
alpha=0.001
#最大迭代次数
max_cycles=500
# 生成一个长度和特征数相同的矩阵,此处n为3 -> [[1],[1],[1]]
# weights 代表回归系数, 此处的 ones((n,1)) 创建一个长度和特征数相同的矩阵,其中的数全部都是 1
weights=np.ones((n,1))
for k in range(max_cycles):
h=sigmoid(data_mat*weights)
error=label_mat-h
weights=weights+alpha*data_mat.transpose()*error
return weights

3. 画出决策边界,即画出数据集合Logistics回归最佳拟合直接的函数

 def plot_best_fit(weights):
"""
可视化
:param weights:
:return:
"""
import matplotlib.pyplot as plt
data_mat, label_mat = load_data_set()
data_arr = np.array(data_mat)
n = np.shape(data_mat)[0]
x_cord1 = []
y_cord1 = []
x_cord2 = []
y_cord2 = []
for i in range(n):
if int(label_mat[i]) == 1:
x_cord1.append(data_arr[i, 1])
y_cord1.append(data_arr[i, 2])
else:
x_cord2.append(data_arr[i, 1])
y_cord2.append(data_arr[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(x_cord1, y_cord1, s=30, color='k', marker='^')
ax.scatter(x_cord2, y_cord2, s=30, color='red', marker='s')
x = np.arange(-3.0, 3.0, 0.1)
y = (-weights[0] - weights[1] * x) / weights[2]
"""
y的由来,卧槽,是不是没看懂?
首先理论上是这个样子的。
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
w0*x0+w1*x1+w2*x2=f(x)
x0最开始就设置为1叻, x2就是我们画图的y值,而f(x)被我们磨合误差给算到w0,w1,w2身上去了
所以: w0+w1*x+w2*y=0 => y = (-w0-w1*x)/w2
"""
ax.plot(x, y)
plt.xlabel('x1')
plt.ylabel('y1')
plt.show()

4. 测试数据,画图

 def test():
"""
这个函数只要就是对上面的几个算法的测试,这样就不用每次都在power shell 里面操作,不然麻烦死了
:return:
"""
data_arr, class_labels = load_data_set()
# 注意,这里的grad_ascent返回的是一个 matrix, 所以要使用getA方法变成ndarray类型
weights = grad_ascent(data_arr, class_labels).getA()
# weights = stoc_grad_ascent0(np.array(data_arr), class_labels)
#weights = stoc_grad_ascent1(np.array(data_arr), class_labels)
plot_best_fit(weights) if __name__ == '__main__':
test()

5. 结果如下

另外,还有

真实训练数据和测试数据-------从疝气病症预测病马的死亡率------
如何预测的代码也附加~
github实现地址:https://github.com/CynthiaWendy/Machine-Learning-in-Action-Logistics

机器学习实战-Logistics回归的更多相关文章

  1. [机器学习实战-Logistic回归]使用Logistic回归预测各种实例

    目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...

  2. 机器学习实战-logistic回归分类

    基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度 ...

  3. 机器学习-对数logistics回归

    今天 学习了对数几率回归,学的不是很明白x1*theat1+x2*theat2...=y 对于最终的求解参数编程还是不太会,但是也大致搞明白了,对数几率回归是由于线性回归函数的结果并不是我们想要的,我 ...

  4. 机器学习实战--logistic回归

    #encoding:utf-8 from numpy import * def loadDataSet(): #加载数据 dataMat = []; labelMat = [] fr = open(' ...

  5. 机器学习实战 logistic回归 python代码

    # -*- coding: utf-8 -*- """ Created on Sun Aug 06 15:57:18 2017 @author: mdz "&q ...

  6. 机器学习算法的Python实现 (1):logistics回归 与 线性判别分析(LDA)

    先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学 ...

  7. 机器学习实战笔记(Python实现)-08-线性回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  8. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  9. 机器学习实战笔记5(logistic回归)

    1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid ...

随机推荐

  1. RMQ 2d 模板

    #include<iostream> #include<cstdio> #include<string.h> #include<string> #inc ...

  2. 一张图明白jenkins和docker作用

    可以看出,jenkins充当的是一个自动构建的作用,构建完后自动部署到机器上.如果没有docker,那么就是直接把打包好的jar包直接部署到服务器.现在是把jar包部署到服务器上的docker容器上. ...

  3. C# List 过滤,排序,删除

    taskList_IsManager.Where(p => p.IsManager == "1").ToList(); taskList = taskList.OrderBy ...

  4. ESP8266-Station模式--我想连上谁

    Station模式又叫做站点工作模式,类似于无线终端 处于Station模式下的ESP8266,可以连接到AP.通过Station(简称为“STA”)模式,ESP8266作为客户端连接到路由的wifi ...

  5. 【NOIP2016提高A组模拟9.24】总结

    第一题纯模拟,结果那个出题人脑子似乎进水了,空间限制开了1G!!! 导致我捉摸了半天为什么空间要开那么大,最后只能得出上面的结论. 第二题是个矩阵快速幂,比赛上我没把递推式求出来,但是根据各种乱搞,得 ...

  6. 对前端Jenkins自动化部署的研究

    1. 安装 安装 Nginx 1.1去官网下直接下载,解压缩 start nginx就可以使了,常用命令: start nginx # 启动 nginx -s reload # 修改配置后重新加载生效 ...

  7. MySQL概述 - 一条查询sql语句的执行过程

    Server层 连接器 建立连接.获取权限.维持和管理连接. 连接建立比较复杂,建议使用长连接 定期断开长连接 mysql_reset_connection指令 查询缓存 建议关闭,任何更新操作会此t ...

  8. Django 的 CBV&FBV

    Django FBV, function base view  视图里使用函数处理请求 url 1 url(r‘^users/‘, views.users), views 1 2 3 4 5 from ...

  9. 【bzoj1026】[SCOI2009]windy数

    *题目描述: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? *输入: 包含 ...

  10. 论文阅读:Elastic Scaling of Stateful Network Functions

    摘要: 弹性伸缩是NFV的核心承诺,但在实际应用中却很难实现.出现这种困难的原因是大多数网络函数(NFS)是有状态的,并且这种状态需要在NF实例之间共享.在满足NFS上的吞吐量和延迟要求的同时实现状态 ...