[NOIP模拟测试9]题(Problem) 题解 (组合数全家桶+dp)
达哥送分给我我都不要,感觉自己挺牛批。
$type=0:$
跟visit那题类似,枚举横向移动的步数直接推公式:
$ans=\sum C_n^i \times C_i^{\frac{i}{2}} \times C_{n-i}^{\frac{n-i}{2}},i\% 2=0$
$type=1:$
因为不能触碰负半轴,所以可以把右移看成+1,左移看成-1,转化为前缀和大于等于0的问题
于是直接Catalan数就好了。注意是第$\frac {n}{2}$项的Catalan。
$Catalan_n=C_{2n}^{n}-C_{2n}^{n-1}$
$type=2:$
观察到数据范围较小,考虑dp。
设$f[i]$为走i步回到原点的方案数,通过枚举第一次回到原点的步数j进行转移。
显然j只能为偶数。
$f[i]=\sum f[i-j]*Catalan(\frac{j}{2}-1)$
$type=3:$
还是枚举横向走的步数,结合Catalan数求解。
$ans=\sum C_n^i*Catalan(\frac{i}{2})*Catalan(\frac{n-i}{2})$
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const ll mod=;
const int N=;
int n,op;
ll fac[N<<],ans,dp[N<<];
ll qpow(ll a,ll b)
{
ll res=;//a%=mod;
while(b)
{
if(b&)res=res*a%mod;
a=a*a%mod;
b>>=;
}
return res;
}
ll ini()
{
fac[]=;
for(int i=;i<=(N-)<<;i++)
fac[i]=1LL*i*fac[i-]%mod;
}
ll C(ll x,ll y)
{
if(y>x)return ;
return fac[x]*qpow(fac[y],mod-)%mod*qpow(fac[x-y],mod-)%mod;
}
ll lucas(ll x,ll y)
{
if(!y)return ;
return C(x%mod,y%mod)*lucas(x/mod,y/mod)%mod;
}
ll Catalan(ll x)
{
return (lucas(x*,x)-lucas(x*,x-)+mod)%mod;
}
void qj1()
{
//cout<<2*n<<endl;
//cout<<C(2*n,n)<<endl;
ans=Catalan(1LL*n/);
cout<<ans<<endl;
}
void qj0()
{
for(int i=;i<=n;i++)
{
if(i%)continue;
ans+=lucas(1LL*n,1LL*i)%mod*lucas(1LL*i,1LL*i/)%mod*lucas(1LL*(n-i),1LL*(n-i)/)%mod,ans%=mod;
}
cout<<ans<<endl;
}
void qj3()
{
for(int i=;i<=n;i++)
{
if(i%)continue;
ans+=lucas(1LL*n,1LL*i)*Catalan(1LL*i/)%mod*Catalan(1LL*(n-i)/)%mod,ans%=mod;
}
cout<<ans<<endl;
}
void qj2()
{
dp[]=;
for(int i=;i<=n;i+=)
for(int j=;j<=i;j+=)
dp[i]+=dp[i-j]*%mod*Catalan(1LL*j/-1LL)%mod,dp[i]%=mod;
cout<<dp[n]<<endl;
}
int main()
{
scanf("%d%d",&n,&op);
ini();
if(op==)qj1();
else if(op==)qj0();
else if(op==)qj3();
else qj2();
return ;
}
[NOIP模拟测试9]题(Problem) 题解 (组合数全家桶+dp)的更多相关文章
- [NOIP模拟测试3] 建造游乐园 题解(欧拉图性质)
Orz 出题人石二队爷 我们可以先求出有n个点的联通欧拉图数量,然后使它删或增一条边得到我们要求的方案 也就是让它乘上$C_n^2$ (n个点里选2个点,要么删边要么连边,选择唯一) 那么接下来就是求 ...
- 「题解」NOIP模拟测试题解乱写II(36)
毕竟考得太频繁了于是不可能每次考试都写题解.(我解释个什么劲啊又没有人看) 甚至有的题目都没有改掉.跑过来写题解一方面是总结,另一方面也是放松了. NOIP模拟测试36 T1字符 这题我完全懵逼了.就 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组
2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色
2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 数据结构学傻的做法: 对每种颜色开动态开点线段树直接维 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)
2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- 7.27 NOIP模拟测试9 随 (rand)+单(single)+题(problem)
T1 随 (rand) dp+矩阵优化+原根 看着题解懵了一晚上加一上午,最后还是看了DeepinC的博客才把暴力码出来,正解看得一知半解,循环矩阵也不太明白,先留坑吧.暴力里用二维矩阵快速幂会tle ...
- 「题解」NOIP模拟测试题解乱写I(29-31)
NOIP模拟29(B) T1爬山 简单题,赛时找到了$O(1)$查询的规律于是切了. 从倍增LCA那里借鉴了一点东西:先将a.b抬到同一高度,然后再一起往上爬.所用的步数$×2$就是了. 抬升到同一高 ...
- 2019.7.29 NOIP模拟测试10 反思总结【T2补全】
这次意外考得不错…但是并没有太多厉害的地方,因为我只是打满了暴力[还没去推T3] 第一题折腾了一个小时,看了看时间先去写第二题了.第二题尝试了半天还是只写了三十分的暴力,然后看到第三题是期望,本能排斥 ...
随机推荐
- 77 geometry process
0 引言 记录几何方面的一些处理技术. 1 任意多边形面积计算:包含凸多边形和凹多边形 转载了JustDoIT https://www.cnblogs.com/TenosDoIt/p/4047211. ...
- 【从0到1,搭建Spring Boot+RESTful API+Shiro+Mybatis+SQLServer权限系统】03、创建RESTful API,并统一处理返回值
本节应用Spring对RESTful的支持,使用了如@RestController等注解实现RESTful控制器. 如果对Spring中的RESTful不太明白,请查看相关书籍 1.创建一个数据对象, ...
- System.exit(0)和System.exit(1)区别(转)
转:http://www.cnblogs.com/xwdreamer/archive/2011/01/07/2297045.html 1.参考文献 http://hi.baidu.com/accpzh ...
- php开发面试题---Redis和Memcache区别,优缺点对比
php开发面试题---Redis和Memcache区别,优缺点对比 一.总结 一句话总结: Redis相当于Memcache的扩展,增加比如持久化.多种数据结构.集群分布式功能 反思的回顾非常有用,因 ...
- 汇编学习(1)——win7 64位调出debug
一.安装方法: 1.下载一个dosbox和win7 32位debug.exe,安装dosbox,打开页面 2. 将debug.exe放入磁盘根目录,这里以D盘为例.在dosbox中输入mount ...
- 使用cookie来做身份认证 转载https://www.cnblogs.com/sheldon-lou/p/9545726.html
文章是msdn的官方文档,链接在这里.其实也有中文的文档,这里还是想做一个记录. 文章有asp.net core 2.x 和1.x 版本,我这里就忽略1.x了. 下面先说几点额外的东西有助于理解. A ...
- 弹出框中的AJAX分页
$(function() { $("body").on("click",".set-topic",function(){ /*获取所有题目接 ...
- Git与GitHub同步
如何通过Git Bash实现本地与远端仓库——GitHub的同步 1.下载安装Git:下载网址 2.在自己的github上新建一个repository 例如我这里新建了一个叫test的reposito ...
- git操作的日常用法
参考博客: https://blog.csdn.net/afei__/article/details/51567155# 最近一段时间总结一些git在个人日常开发当中用到的方法, 并记录下来, 同时 ...
- yum update过程中失败后再次执行出现“xxxx is a duplicate with xxxx”问题
问题现象: 解决办法: 利用yum-uitls中的工具package-cleanup指令,使用方法见下图,具体可通过man package-cleanup查询 列出重复的rpm包 pac ...