Reinforcement Learning Posts


Step-by-step from Markov Property to Markov Decision Process

Markov Decision Process in Detail

Optimal Value Function and Optimal Policy

Dynamic Programming and Policy Evaluation

Policy Improvement and Policy Iteration

Value Iteration Algorithm for MDP

Monte Carlo Policy Evaluation

Monte Carlo Control

Temporal-Difference Learning for Predictions

TD Control: SARSA and Q-Learning

State Function Approximation: Linear Function

Reinforcement Learning Index Page的更多相关文章

  1. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  2. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  3. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  4. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  5. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  6. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  7. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

  8. 论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning

    Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop  Paper : https://a ...

  9. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

随机推荐

  1. netdevice - 底层访问 Linux 网络设备

    总览 (SYNOPSIS) #include <sys/ioctl.h> #include <net/if.h> 描述 (DESCRIPTION) 本手册 描述 用于 配置 网 ...

  2. Mongo--02 命令介绍

    目录 Mongo工具 1. 查看指令 2.插入命令 3.查询命令 4.更新数据 5.索引 5.删除 6.mongo命令介绍 7.创建用户和角色 Mongo工具 1. 查看指令 test:登录时默认存在 ...

  3. linux c++下遍历文件

    https://blog.csdn.net/u013617144/article/details/44807333

  4. qt03 QString和QByteArray相互转换

    QString str("hello");   QByteArray bytes = str.toUtf8(); // QString转QByteArray方法1       QS ...

  5. [lean scala]|How to create a SBT project with Intellij IDEA

    this article show you how to create a SBT project with IDEA. prerequisite: 1.JDK8 2.Scala 2.11.8 3.I ...

  6. lnamp完整版[linux+apache2.4+php5.6.6+mysql5.6]

    Lnamp环境安装实录 将采用的开源软件: Apache [WEB动态脚本服务器,做nginx的反向代理 8080端口] Tengine [WEB静态文件服务器 80端口] MySQL PHP .Ap ...

  7. DevExpress v18.2版本亮点——Analytics Dashboard篇(二)

    行业领先的.NET界面控件——DevExpress v18.2版本亮点详解,本文将介绍了DevExpress Analytics Dashboard v18.2 的版本亮点,新版30天免费试用!点击下 ...

  8. JAVA的深浅拷备

    package com.jd.ng.shiro.testFactory; import java.io.*; /** * @author wangzhilei * @Author: husToy.Wa ...

  9. DUBBO原理、应用与面经总结

    研读dubbo源码已经有一段时间了,dubbo中有非常多优秀的设计模式和示例代码值得学习,但是dubbo的调用层级和方法链都较为繁杂,如果不对源码思路进行梳理则很容易忘却,因此总结一篇研读心得,从阅读 ...

  10. Python---进阶---文件操作---按需求打印文件的内容

    一. 编写一个程序,当用户输入文件名和行数的时候,将该文件的前N行内容打印到屏幕上 input 去接收一个文件名 input 去接收一个行数 ----------------------------- ...