*题目描述:
今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。
全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接。为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号。其中SZ市的编号为 1。对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv 以及到父亲城市道路的长度 sv。
从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交通工具到达 a。再选择城市 a 的一个祖先 b,支付费用并到达 b。以此类推,直至到达SZ市。
对于任意一个城市 v,我们会给出一个交通工具的距离限制 lv。对于城市 v 的祖先 a,只有当它们之间所有道路的总长度不超过 lv 时,从城市 v 才可以通过一次购票到达城市 a,否则不能通过一次购票到达。对于每个城市 v,我们还会给出两个非负整数 pv,qv 作为票价参数。若城市 v 到城市 a 所有道路的总长度为 d,那么从城市 v 到城市 a 购买的票价为 dpv+qv。
每个城市的OIer都希望自己到达SZ市时,用于购票的总资金最少。你的任务就是,告诉每个城市的OIer他们所花的最少资金是多少。

*输入:
第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到)。输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市。其中第 v 行包含 5 个非负整数 f_v,s_v,p_v,q_v,l_v,分别表示城市 v 的父亲城市,它到父亲城市道路的长度,票价的两个参数和距离限制。请注意:输入不包含编号为 1 的SZ市,第 2 行到第 n 行分别描述的是城市 2 到城市 n。

*输出:
输出包含 n-1 行,每行包含一个整数。其中第 v 行表示从城市 v+1 出发,到达SZ市最少的购票费用。同样请注意:输出不包含编号为 1 的SZ市。

*样例输入:
7 3
1 2 20 0 3
1 5 10 100 5
2 4 10 10 10
2 9 1 100 10
3 5 20 100 10
4 4 20 0 10

*样例输出:
40
150
70
149
300
150

*提示:

对于所有测试数据,保证0≤pv≤106,0≤qv≤1012,1≤fv<v;保证0<sv≤lv≤2×1011,且任意城市到SZ市的总路程长度不超过 2×1011。
输入的 t 表示数据类型,0≤t<4,其中:
当 t=0 或 2 时,对输入的所有城市 v,都有 fv=v−1,即所有城市构成一个以SZ市为终点的链;
当 t=0 或 1 时,对输入的所有城市 v,都有 lv=2×1011,即没有移动的距离限制,每个城市都能到达它的所有祖先;
当 t=3 时,数据没有特殊性质。
n=2×105

*题解:
我的做法是O(nlog32n)树链剖分套线段树套凸包上二分的斜率优化。据说有O(nlog22n)的点分治的做法,但是我不是很会。。。不过跑得应该还不是很慢。。。
每次查询的时候在线段树上二分即可。单点查询时还要在凸包上二分,因为横坐标不是单调的所以不能用什么单调队列优化。

*代码:

#include <bits/stdc++.h>
using namespace std; #ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif #ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout)
#endif #define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
#define cabs(_x) ((_x) < 0 ? (- (_x)) : (_x))
char B[1 << 15], *S = B, *T = B;
#define ll long long
inline ll F()
{
R char ch; R ll cnt = 0; R bool minus = 0;
while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
ch == '-' ? minus = 1 : cnt = ch - '0';
while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
return minus ? -cnt : cnt;
}
#define maxn 200010
struct Edge
{
Edge *next;
int to;
}*last[maxn], e[maxn], *ecnt = e;
inline void link(R int a, R int b)
{
*++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
}
int dep[maxn], fa[maxn], son[maxn], dfn[maxn], timer, pos[maxn], size[maxn], n, top[maxn];
ll d[maxn], p[maxn], q[maxn], l[maxn], f[maxn];
int stcnt;
void dfs1(R int x)
{
size[x] = 1; dep[x] = dep[fa[x]] + 1;
for (R Edge *iter = last[x]; iter; iter = iter -> next)
{
dfs1(iter -> to);
size[x] += size[iter -> to];
size[iter -> to] > size[son[x]] ? son[x] = iter -> to : 0;
}
}
void dfs2(R int x)
{
dfn[x] = ++timer;
pos[timer] = x;
top[x] = x == son[fa[x]] ? top[fa[x]] : x;
if (son[x]) dfs2(son[x]);
for (R Edge *iter = last[x]; iter; iter = iter -> next)
if (iter -> to != son[x]) dfs2(iter -> to);
}
#define P pair<ll, ll>
#define mkp make_pair
#define x first
#define y second
#define inf ~0ULL >> 2
inline double slope(const P &a, const P &b)
{
return (b.y - a.y) / (double) (b.x - a.x);
}
struct Seg
{
vector<P> v;
inline void add(const P &that)
{
R int top = v.size();
R P *v = this -> v.data() - 1;
while (top > 1 && slope(v[top - 1], v[top]) > slope(v[top], that)) --top;
this -> v.erase(this->v.begin() + top, this->v.end()); this->v.push_back(that);
}
inline ll query(ll k)
{
if(v.empty()) return inf;
R int l = 0, r = v.size() - 1;
while (l < r)
{
R int mid = l + r >> 1;
if (slope(v[mid], v[mid + 1]) > k) r = mid;
else l = mid + 1;
}
cmin(l, v.size()-1);
return v[l].y - v[l].x * k;
}
}tr[1 << 19];
void Change(R int o, R int l, R int r, R int x, R P val)
{
tr[o].add(val);
if (l == r) return;
R int mid = l + r >> 1;
if (x <= mid) Change(o << 1, l, mid, x, val);
else Change(o << 1 | 1, mid + 1, r, x, val);
}
int ql, qr, now, tmp;
ll len;
inline ll Query(R int o, R int l, R int r)
{
if (ql <= l && r <= qr && d[tmp] - d[pos[r]] > len) return inf;
if (ql <= l && r <= qr && d[tmp] - d[pos[l]] <= len)
return tr[o].query(p[now]);
R ll ret = inf, temp;
R int mid = l + r >> 1;
if (ql <= mid) temp = Query(o << 1, l, mid), cmin(ret, temp);
if (mid < qr) temp = Query(o << 1 | 1, mid + 1, r), cmin(ret, temp);
return ret;
}
inline ll calc()
{
R ll ret = inf;
R ll lx = l[now];
tmp = now;
while (lx >= 0 && tmp)
{
len = lx;
ql = dfn[top[tmp]];
qr = dfn[tmp];
R ll g = Query(1, 1, n);
cmin(ret, g);
lx -= d[tmp] - d[fa[top[tmp]]];
tmp = fa[top[tmp]];
}
return ret;
}
int main()
{
n = F(); R int t = F();
for (R int i = 2; i <= n; ++i)
{
fa[i] = F(); R ll dis = F(); p[i] = F(), q[i] = F(), l[i] = F();
link(fa[i], i); d[i] = d[fa[i]] + dis;
}
dfs1(1);
dfs2(1);
Change(1, 1, n, 1, mkp(0, 0));
for (now = 2; now <= n; ++now)
{
f[now] = calc() + q[now] + d[now] * p[now];
Change(1, 1, n, dfn[now], mkp(d[now], f[now]));
printf("%lld\n", f[now] );
}
return 0;
}

【bzoj3672&&uoj7】[Noi2014]购票的更多相关文章

  1. BZOJ3672/UOJ7 [Noi2014]购票

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  2. 【BZOJ3672】[Noi2014]购票 树分治+斜率优化

    [BZOJ3672][Noi2014]购票 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.       ...

  3. 【bzoj3672】[Noi2014]购票 斜率优化dp+CDQ分治+树的点分治

    题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费 ...

  4. [BZOJ3672][UOJ#7][NOI2014]购票

    [BZOJ3672][UOJ#7][NOI2014]购票 试题描述  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.       ...

  5. bzoj千题计划251:bzoj3672: [Noi2014]购票

    http://www.lydsy.com/JudgeOnline/problem.php?id=3672 法一:线段树维护可持久化单调队列维护凸包 斜率优化DP 设dp[i] 表示i号点到根节点的最少 ...

  6. [BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治

    3672: [Noi2014]购票 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1749  Solved: 885[Submit][Status][ ...

  7. bzoj 3672: [Noi2014]购票 树链剖分+维护凸包

    3672: [Noi2014]购票 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 480  Solved: 212[Submit][Status][D ...

  8. BZOJ 3672: [Noi2014]购票( 树链剖分 + 线段树 + 凸包 )

    s弄成前缀和(到根), dp(i) = min(dp(j) + (s(i)-s(j))*p(i)+q(i)). 链的情况大家都会做...就是用栈维护个下凸包, 插入时暴力弹栈, 查询时就在凸包上二分/ ...

  9. [NOI2014]购票 --- 斜率优化 + 树形DP + 数据结构

    [NOI2014]购票 题目描述 今年夏天,NOI在SZ市迎来了她30周岁的生日. 来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每 ...

  10. 【BZOJ 3672】 3672: [Noi2014]购票 (CDQ分治+点分治+斜率优化)**

    3672: [Noi2014]购票 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国 ...

随机推荐

  1. 联盟周赛2019810 csgo (动态规划、不下降子序列)

    今天起晚了...就做了俩题 难受的一批... 题目描述 著名第一人称射击游戏 csgo 因其优秀的平衡性,爽快的射击感和科学的战术配比赢得了世界广大玩家的好评. 在一局游戏中,分为两个阵营,他们的目标 ...

  2. IDEA下集成tomcat7插件将tomcat内嵌到web项目中

    新建一个maven web项目 修改pom.xml文件 <build> <plugins> <!-- 配置Tomcat插件: 就是本地部署,将tomcat 内嵌到 web ...

  3. Java计算两个时间的天数差与月数差 LocalDateTime

    /**  * 计算两个时间点的天数差  * @param dt1 第一个时间点  * @param dt2 第二个时间点  * @return int,即要计算的天数差  */ public stat ...

  4. 1.基础CRUD

    在ef中,CUD都使用Datacontext.SaveChange()进行保存. SavaChange方法在保存之前会自动调用DetectChanges方法检查DataContext中做了什么更改,以 ...

  5. java复习(1)

    这几天开学,很多知识点还很生疏,这两天先把java基础复习一下,有段时间没有写博客了,今天就先谈谈进制转换吧. 1.二进制数的原码,补码和反码 1):对于正数的原码,补码和反码均是相同的,这里不讨论了 ...

  6. Input常用的输入框验证(正则)

    1.只是不能输入空格 <input type="text" οnkeyup="this.value=this.value.replace(/^ +| +$/g,'' ...

  7. git如何忽略特殊文件

    有些时候,你必须把某些文件放到Git工作目录中,但又不能提交它们,比如保存了数据库密码的配置文件啦,等等,每次git status都会显示Untracked files ...,有强迫症的童鞋心里肯定 ...

  8. numpy中的argsort()函数

    在阅读<机器学习实战>一书中,发现了一个比较函数是argsort() 猜测是在numpy中出现的,手动进行了测试 >>> import numpy as np >& ...

  9. java.lang.ClassNotFoundException: org.apache.jsp.login_jsp

    <span style="font-family: Simsun; background-color: rgb(255, 255, 255);">想必大家在用Eclip ...

  10. jumpserver模块功能介绍

    一.仪表盘二.用户管理1.用户列表2.用户组 三.资产管理 1.资产列表 1.1 管理资产树 资产树节点不能重名, 右击节点可以添加.删除和重命名节点, 以及进行资产相关的操作 1.2 为资产树节点创 ...