统计学习方法——第四章朴素贝叶斯及c++实现
1、名词解释
贝叶斯定理,自己看书,没啥说的,翻译成人话就是,条件A下的bi出现的概率等于A和bi一起出现的概率除以A出现的概率。
记忆方式就是变后验概率为先验概率,或者说,将条件与结果转换。
先验概率:某件事情发生概率
后验概率:某件事情发生后,由于某个原因引起的概率大小。
2、朴素贝叶斯代码
#include <cstdio>
#include <Windows.h>
#include "LBayesClassifier.h" const int NUM = ;
const int Dim = ; int main()
{ int dataList[NUM*Dim] =
{ , , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , };
LBayesMatrix sampleMatrix(NUM, Dim, dataList); int classList[NUM] = { , , , , , , , , , , , , , };
LBayesMatrix classVector(NUM, , classList); LBayesProblem problem(sampleMatrix, classVector, BAYES_FEATURE_CONTINUS); LBayesClassifier classifier;
classifier.TrainModel(problem); LBayesMatrix newSample(, Dim);
newSample[][] = ;
newSample[][] = ;
newSample[][] = ;
newSample[][] = ;
int predictValue;
classifier.Predict(newSample, &predictValue); printf("%d\n", predictValue);
system("pause");
return ;
}
3、这一张后面的题
以第一道题为例,第一题第二问差不多,第二题就是上面加个k,下面加个所有k之和,总的来说他们想加之后为1的。没啥说的,加班撸代码了。
统计学习方法——第四章朴素贝叶斯及c++实现的更多相关文章
- 统计学习方法(李航)朴素贝叶斯python实现
朴素贝叶斯法 首先训练朴素贝叶斯模型,对应算法4.1(1),分别计算先验概率及条件概率,分别存在字典priorP和condP中(初始化函数中定义).其中,计算一个向量各元素频率的操作反复出现,定义为c ...
- 第四章 朴素贝叶斯法(naive_Bayes)
总结 朴素贝叶斯法实质上是概率估计. 由于加上了输入变量的各个参量条件独立性的强假设,使得条件分布中的参数大大减少.同时准确率也降低. 概率论上比较反直觉的一个问题:三门问题:由于主持人已经限定了他打 ...
- 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)
第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...
- 机器学习Sklearn系列:(四)朴素贝叶斯
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立. 条件概率公式: \[P(B|A) = \frac ...
- 100天搞定机器学习|Day15 朴素贝叶斯
Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英 ...
- 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯
一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设 条件独立性假设:假设在给定label y的条件下,特征之间是独立的 最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...
- 统计学习方法与Python实现(三)——朴素贝叶斯法
统计学习方法与Python实现(三)——朴素贝叶斯法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设 ...
- 统计学习1:朴素贝叶斯模型(Numpy实现)
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\ ...
- Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...
随机推荐
- 大哥带我们的mysql注入 基于bool的盲注
盲注 那么我们来了解一点盲注的语法 这里面是语法的介绍 https://blog.csdn.net/alex_seo/article/details/82148955 0X01第一步我们先判断当前数据 ...
- 追加环境变量到Path
@echo off setlocal enabledelayedexpansion ::使用方法: :: "C:\WINDOWS" :: "C:\jar" SE ...
- lianjie3
http://7xj7xs.com1.z0.glb.clouddn.com/xiao-chengxu.mp4
- 数据结构和算法(Java版)快速学习(栈与队列)
栈是仅允许在表尾进行插入和删除操作的线性表.我们把允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom).栈是一种后进先出(Last In First Out)的线性表,简称(LIFO ...
- zay大爷的神仙题目 D1T1-大美江湖
在前几天的时候,千古神犇zay(吊打zhx那个)出了一套神仙题目,所以我得来分析分析QWQ 先补个网易云链接QWQ 毕竟是T1嘛,还算是比较简单的,那道题,读完题目就发现是个中等模拟(猪国杀算大模拟的 ...
- C#调用C++的库 P/Invoke工具集
p/Invoke可以使用工具辅助自动生成,以减少混淆 1.官方的支持 http://visualstudiogallery.msdn.microsoft.com/site/search?query=p ...
- Git:目录
ylbtech-Git:目录 1.返回顶部 1. https://git-scm.com/ 2. 2.返回顶部 1.Easy Git Integration Tools https://marketp ...
- mysql数据库连接错误10060
今天在使用mysql数据库的时候,出现错误ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10060) 我在网上一顿 ...
- Python学习之==>日志模块
一.logging模块介绍 logging是Python中自带的标准模块,是Python中用来操作日志的模块. 1.控制台输出日志 import logging logging.basicConfig ...
- 【Spring】---属性注入
一.Spring注入属性(有参构造和[set方法]) 注意:在Spring框架中只支持set方法.有参构造方法这两种方法. 使用有参数构造方法注入属性(用的不多,但需要知道): 实体类 package ...