在SVM中,我们的超平面参数最终只与间隔边界上的向量(样本)有关,故称为支持向量机。

求解最优超平面,即求最大化间隔,或最小化间隔的倒数:||w||2/2,约束条件为yi(wTxi+b)>=1

因为此函数为凸函数(拉格朗日乘子法的前提条件),可用拉格朗日乘子法转化为对偶问题,当满足KKT条件时,对偶问题=原始问题。

关于约束:

1. 目标函数极值点在约束范围内:此时不等式约束失效,问题即退化为无约束优化问题。

这个很好理解,函数只有一个极值点,如果在约束范围内,直接对函数求极值点即可。

2. 目标函数极值点在约束范围外:最优解一定在可行域边界; 且满足在该点处的两个函数的梯度方向相反。

关于这点,很多人从梯度方向去解释,其实有个更简单的解释:反证法,目标函数的极值点在约束范围外,假设最优解不在边界,而在约束范围内,那么这个最优解将是另一个极值点,这与凸的目标函数只有一个极值点矛盾,故最优解必在约束边界。

而所谓KKT条件的形式,即以上2点说明的内涵。

SVM之KKT条件理解的更多相关文章

  1. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  2. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  3. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  4. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. 机器学习之支持向量机(三):核函数和KKT条件的理解

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  6. 真正理解拉格朗日乘子法和 KKT 条件

        这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如 ...

  7. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  8. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  9. 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)

    SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...

随机推荐

  1. Web前端经典面试试题(三)

    一. 什么是Ajax??? 术语Ajax用来描述一组技术,它使浏览器可以为用户提供更为自然的浏览体验. Ajax它是"Asynchronous JavaScript + XML的简写&quo ...

  2. 原生js实现Ajax请求,包含get和post

    现在web从服务器请求数据,很多用到Ajax,不过都是用的JQuery封装好的,之前做项目,由于无法引用JQuery,所以就只能用原生了,话不多说,请看代码. /*------------------ ...

  3. fedora29 下一款截图工具shutter的安装和调试

    运行命令安装shutter sudo yum install shutter 如果使用过程中出现花屏 sudo vim /etc/gdm/custom.conf 把 #WaylandEnabled=f ...

  4. 【UOJ#37】 [清华集训2014] 主旋律

    题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...

  5. Acwing-97-约数之和(整数分解, 递推分治)

    链接: https://www.acwing.com/problem/content/99/ 题意: 假设现在有两个自然数A和B,S是AB的所有约数之和. 请你求出S mod 9901的值是多少. 思 ...

  6. 4.2 会议室预定系统,ajax参数(未完成)

    参考blog https://www.cnblogs.com/alice-bj/p/9191082.html https://www.cnblogs.com/yuanchenqi/articles/7 ...

  7. 【leetcode】1232. Check If It Is a Straight Line

    题目如下: You are given an array coordinates, coordinates[i] = [x, y], where [x, y] represents the coord ...

  8. [JZOJ6244]【NOI2019模拟2019.7.1】Trominoes 【计数】

    Description n,m<=10000 Solution 考虑暴力轮廓线DP,按顺序放骨牌 显然轮廓线长度为N+M 轮廓线也是单调的 1表示向上,0表示向右 N个1,M个0 只能放四种骨牌 ...

  9. Android_(传感器)指南针

    Android方向传感器 传感器中的X:如上图所示,规定X正半轴为北,手机头部指向OF方向,此时X的值为0,如果手机头部指向OG方向,此时X值为90,指向OH方向,X值为180,指向OE,X值为270 ...

  10. 前端性能优化 —— reflow(回流/重排)和repaint(重绘)

    简要:整个在浏览器的渲染过程中(页面初始化,用户行为改变界面样式,动画改变界面样式等)reflow(回流)和repaint(重绘) 会大大影响web性能,尤其是手机页面.因此我们在页面设计的时候要尽量 ...