传送门

写在前面:为了保护正睿题目版权,这里不放题面,只写题解。


首先恭喜swk今天翻车!

“小心大样例演你。”——天祺鸽鸽

果然swk今天被大样例演死了,天祺鸽鸽诚不欺我!


  • A

这题标程是前几天ACM赛的双栈背包……

然而可以排序之后直接背包,\(O(nm)\)随便过(


  • B

菜 swk 菜

发现答案就是子串中最长border,即串长减去最短循环节。

每个字母是独立的,可以分开计算答案。

对第\(i\)个字母,设循环节循环次数为\(k\),在循环节内的长度为\(f_i\),剩余的长度为\(g_i\),则存在\(f_i\cdot k+g_i=c_i\),此时\(i\)对答案的贡献为\(f_i (k-1)+\min(f_i,g_i)\)。

\(40pts:\)

有一个假做法在\(n=2\)时是对的,但是陈主力也不知道为什么。

考虑枚举\(k\)。直觉想到可以贪心地令\(f_i\)最大,即\(f_i=\lfloor\frac{c_i}k\rfloor\)。

然而在\(n>2\)时就会出锅。

反例大概是\(k\leq 3\)时,贪心的使\(f_i\)最长,会因为第一个循环节被剪掉导致答案变小。

\(70pts:\)

仍然要枚举\(k\),但是需要确定\(f_i\)的最优取值。

分两种情况讨论:\(f_i< g_i\)和\(f_i\geq g_i\)。

第一种情况,\(ans=f_i\cdot k\),即\(f_i<g_i\)时,\(f_i\)越大越优。

此时有\(f_i<g_i=c_i-f_i\cdot k\),移项得\(f_i\cdot (k+1)<c_i\),即\(f_i=\lfloor\frac{c_i}{k+1}\rfloor\)时最优。

第二种情况,\(ans=f_i\cdot (k-1)+g_i\)。

考虑在保持\(f_i\geq g_i\)的情况下,令\(f'_i=f_i-1\),则\(g'_i=c_i-f'_i\cdot k=c_i-(f_i-1)\cdot k=g_i+k\),代入上式得\(ans'=(f_i-1)\cdot (k-1)+g_i+k=f_i\cdot (k-1)+g_i+1=ans+1\)。

我们惊喜地发现,使\(f_i\)减小之后,\(ans\)增大了。即\(f_i\geq g_i\)时,\(f_i\)越小越优。

此时有\(f_i\cdot(k+1)\geq c_i\),即\(f_i=\lceil\frac{c_i}{k+1}\rceil\)时最优。

枚举\(k\),对每个\(k\)取两个值计算。复杂度\(O(\max(c_i)\cdot n)\)。

\(100pts:\)

发现对于每个有若干互不相交的\([l_i,r_i]\),使得对于任意\(k_i\in [l_i,r_i],j\in [1,n]\),\(\lfloor\frac{c_j}{k_i+1}\rfloor,\lceil\frac{c_j}{k_i+1}\rceil\)的值是相等的。

这启发我们使用整除分块,对每个区间只算一次。由某些数论知识可知,这样的区间最多只有\(O(\sum\sqrt {c_i})\)个。时间复杂度\(O(n\cdot\sum\sqrt{c_i})\)。


  • C

\(10pts:\)

取反、左移、右移。

\(25pts:\)

位运算实现a+b:xor,and,左移\(1\)位,递归即可。

\(40pts:\)

把每一位取出来之后直接加,最多迭代\(6\)次即可。

\(65pts:\)

发现将\(x\) xor \(y\)的最高位提取出来就可以解决。

设\(x\) xor \(y=a\) ,对于\(i\in [1,\log_2 64)\),执行\(a |=(a>>2^i)\)。

如此操作后,\(a\)的最高位以下的位全都赋为了\(1\)。xor一下就好了。

\(80pts:\)

做法类似上个子任务,方向反过来即可。需要卡一卡常数。

\(100pts:\)

发现需要实现\(\min(x,y)\)。

\(\min(x,y)=[x<y]\cdot x+[x\geq y]\cdot y\),发现需要实现一个数乘以\(0/1\)。等价于and上 \(0/2^{64}-1\),用子任务\(4\)的方式解决即可。

ZROI 19.08.08模拟赛的更多相关文章

  1. ZROI 19.08.07模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "正睿从来没有保证,模拟赛的题目必须原创." "文案不是我写的,有问题找喵老师去."--蔡老师 ...

  2. ZROI 19.08.09模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当 ...

  3. ZROI 19.08.06模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽 ...

  4. ZROI 19.08.12模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...

  5. ZROI 19.08.11模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts ...

  6. ZROI 19.08.10模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...

  7. ZROI 19.08.05模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(21pts:\) 随便枚举,随便爆搜就好了. \(65pts:\) 比较显然的dp,设\(f_{i,j,k}\)表示在子树\( ...

  8. ZROI 19.08.04模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "这应该是正睿OI历史上第一次差评破百的比赛." "这说明来正睿集训的人越来越多了." &qu ...

  9. 2019.08.06模拟赛T2

    题目大意: 已知三个$n$位二进制数$A$,$B$,$C$. 满足: $A+B=C$ 它们二进制位中$1$的个数分别为$a$,$b$,$c$. 求满足条件的最小的$C$. Solution 唉,又是一 ...

  10. 「HGOI#2019.4.19省选模拟赛」赛后总结

    t1-Painting 这道题目比较简单,但是我比较弱就只是写了一个链表合并和区间DP. 别人的贪心吊打我的DP,嘤嘤嘤. #include <bits/stdc++.h> #define ...

随机推荐

  1. Array数组对象

    1.数组方法: 1>字符串的连接: var myarr1= new Array("010") var myarr2= new Array("-",&quo ...

  2. shell脚本判断端口是否打开

    [root@www zabbix_scripts]# cat check_httpd.sh #!/bin/bash a=`lsof -i: | wc -l` " ];then " ...

  3. Centos6.5修改mysql登陆用户密码

    1.修改mysql的登陆设置: vim /etc/my.cnf 并在[mysqld] 下面添加一句:skip-grant-tables=1 添加成功后保存退出. 2.重启mysql并修改密码 重启my ...

  4. USACO1.6 回文质数 Prime Palindromes

    题目传送门 题目的提示已经非常明显了,可以先生成回文数再判断质数,因为生成回文数的复杂度较小.判断质数用了之前学到的那种做法. 其实可以用一些比较优秀的筛质数的方法,再判断回文数. /* ID: St ...

  5. 深入理解java:2.3.6. 并发编程concurrent包 之管理类---线程池

    我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁 ...

  6. python 并发编程 多线程 互斥锁

    互斥锁 并行变成串行,牺牲效率 保证数据安全,实现局部串行 保护不同的数据,应该加不同的锁 现在一个进程 可以有多个线程 所有线程都共享进程的地址空间 实现数据共享 共享带来问题就会出现竞争 竞争就会 ...

  7. Windows Forms和WPF在Net Core 3.0框架下并不会支持跨平台

    Windows Forms和WPF在Net Core 3.0框架下并不会支持跨平台 微软将WinForms和WPF带到.NET Core 3.0这一事实,相信大家都有所了解,这是否意味着它在Linux ...

  8. 克隆完虚拟机后修改网卡,修改静态IP

    命令:vim  /etc/sysconfg/network-scripts/ifcfg-eth0 编辑: vi /etc/udev/rules.d/70-persistent-net.rules 克隆 ...

  9. Boruvka

    大概是这样的:一开始图中有\(n\)个连通块,每次操作我们选出各个连通块连出去的最短的边(如果有相同边权的边的话可以把序号作为第二关键字),然后把这些边加入最小生成树. 最坏的情况下每次操作都会让当前 ...

  10. CF 1136B Nastya Is Playing Computer Games

    题目链接:codeforces.com/problemset/problem/1136/B 题目分析 首先,读完题目,看了是个B题,嗯嗯...... 果断找规律,然后交了一波,居然过了!!! 代码区 ...