First I have to say: I have poor English. I am too young, too simple, sometimes naïve.

It was tree-planting day two weeks ago. SHENBEN dph taught us a lot about tree-planting and the disjoint sets. It was useful and valuable for a JURUO like me. I admire all SHENBENs and orz all of them!

How to plant a tree?

First of all, you should know how to make "parent arrays". It is good, isn't it? Using an array f[] you can put information about someone's father. Use f[i], i is an element's index, and f[i] means the father's index.

And we can use disjoint sets now:

  1. value all elements in array f[] as the index itself. It means all elements' father are themselves, and they any of them is a single set.
  2. to union two sets, use f[find(y)] = find(x); code. This means one set "tree" is the father of another.
  3. to see if one and another are in a set, use if (find(x) == find(y)) to determine.

But how to union sets? You can regard this method as making a tree. We can link two trees into one tree, so the question of how many continuous blocks equals the question of how many trees.

And how to find one's daddy ancestor? Using DFS can help a lot. If A is the father of itself, it is the top ancestor. Or, it must we can DFS its father B then (we can make the top ancestor C we found the father of A. It can save time.

Disjoint-set data structure

So it's simple as these codes: (LUOGU P3367 Disjoint Sets)

 /* Luogu P3367 并查集
* Au: GG
*/
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = + ;
int n, m, z, x, y, f[maxn];
int find(int k) { // find father
return f[k] == k ? k : f[k] = find(f[k]);
}
int main() {
//freopen("p3367.in", "r", stdin);
scanf("%d%d", &n, &m);
while (n--) f[n] = n;
while (m--) {
scanf("%d%d%d", &z, &x, &y);
if (z == ) {
f[find(y)] = find(x);
} else {
if (find(x) == find(y)) printf("Y\n");
else printf("N\n");
}
}
return ;
}

Yes yes, it's quite simple at first. That's why we love mathematics computer science.

The Tree-planting Day and Simple Disjoint Sets的更多相关文章

  1. Disjoint Sets

    Disjoint Sets Disjoint Sets的意思是一堆集合們,它們相互之間都沒有交集.沒有交集是指:各個集合之間沒有擁有共同.相同的元素.中文稱作「分離集」. Disjoint Sets的 ...

  2. 算法实践--不相交集合(Disjoint Sets)

    什么是不相交集合(Disjoint Sets) 是这样的一组set,任何元素最多只能在一个set中 至少支持查找Find和合并Union操作 实现方式(基于树) 每个set都是一棵树 每棵树都由树的根 ...

  3. [hdu6984]Tree Planting

    构造一个01矩阵,其中格子$(i,j)$​​​​​对应于第$ik+j$​​个​​​的位置(其中$0\le i<\lceil\frac{n}{k}\rceil,0\le j<k$​​​,位置 ...

  4. HDU 6984 - Tree Planting(数据分治+状压 dp)

    题面传送门 傻逼卡常屑题/bs/bs,大概现场过得人比较少的原因就是它比较卡常罢(Fog 首先对于这样的题我们很难直接维护,不过注意到这个 \(n=300\) 给得很灵性,\(k\) 比较小和 \(k ...

  5. Expression Tree Basics 表达式树原理

    variable point to code variable expression tree data structure lamda expression anonymous function 原 ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Linux and the Device Tree

    来之\kernel\Documentation\devicetree\usage-model.txt Linux and the Device Tree ----------------------- ...

  8. 数据结构与算法分析 – Disjoint Set(并查集)

    什么是并查集?并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 并查集的主要操作1.合并两个不相交集合2.判断两个元素是否属于同一集合 主要操作的解释 ...

  9. 并查集(Disjoint Set)

    在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题其特点是看似并不复杂, ...

随机推荐

  1. 聊聊redis的监控工具

    序 本文主要研究一下redis的监控工具 redis-stat redis-stat是一个比较有名的redis指标可视化的监控工具,采用ruby开发,基于redis的info命令来统计,不影响redi ...

  2. Vue混入:基础

    混入 (mixin) 提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能. 一 App组件 <template> <div id="app"> & ...

  3. netcore之mysql中文乱码问题解决记录

    尝试了netcore代码里面设置基本无效了 https://dev.mysql.com/doc/connector-net/en/connector-net-entityframework-core- ...

  4. 20190815 On Java8 第五章 控制流

    第五章 控制流 迭代语句 逗号操作符 在 Java 中逗号运算符(这里并非指我们平常用于分隔定义和方法参数的逗号分隔符)仅有一种用法:在 for 循环的初始化和步进控制中定义多个变量.我们可以使用逗号 ...

  5. 转载 IDEA搭建maven项目详细步骤(解决没有src及其下面的文件)

    转载自

  6. Windows Server2003 关闭 关机信息、开机ctrl+alt+del

    取消CTRL+ALT+DEL win+R 或从"开始"打开"运行",输入gpedit.msc打开"组策略编辑器",依次展开"计算机 ...

  7. MySql-第七篇单表查询

    1.MySQL中可以使用+.-.*./. 1>但MySQL中没有提供字符串连接运算符,可以使用concat(a_str,'xxx')进行连接. 2>在算术表达式中使用null,将会导致整个 ...

  8. echarts之折线图介绍及使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. C# 字符串的拆分

    string str = "ABCD"; char[] strCharArr = str.ToCharArray(); //结果 //strCharArr[0]='A', //st ...

  10. supermap idesktop连接oraclesptial数据源

    1.要使用相同的版本,如iServer 9D, iDesktop9D ,32位的 plsql,32位的 oracleinstance_client 11g 2.当时遇到的问题是使用oracleinst ...