题目传送门


题目描述

暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题。由于地上露营湿气重,必须选择在高处的树屋露营。小龙分配的树屋建立在一颗高度为N+1尺(N为正整数)的大树上,正当他发愁怎么爬上去的时候,发现旁边堆满了一些空心四方钢材(如图),经过观察和测量,这些钢材截面的宽和高大小不一,但都是1尺的整数倍,教官命令队员们每人选取N个空心钢材来搭建一个总高度为N尺的阶梯来进入树屋,该阶梯每一步台阶的高度为1尺,宽度也为1尺。如果这些钢材有各种尺寸,且每种尺寸数量充足,那么小龙可以有多少种搭建方法?(注:为了避免夜里踏空,钢材空心的一面绝对不可以向上。)


输入格式

一个正整数N,表示阶梯的高度。


输出格式

一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)


样例

样例输入

3

样例输出

5


数据范围与提示

样例说明:

数据范围:

对于全部数据,$N \leqslant 100$。


题解

根据个人做题经验,看到样例输入3,样例输出5,优先考虑卡特兰数。

根据数据范围,可以使用分解质因数和高精度两种做法求出卡特兰数。


代码时刻

分解质因数+高精乘低精:

#include<bits/stdc++.h>
using namespace std;
int n;
int pre[2000001],pri[2000001];
int wzc[2000001];
int l=1;
long long ans[100001],flag1,flag2;
void pre_work()
{
ans[1]=1;
for(int i=2;i<=2*n;i++)
{
if(!pri[i])
{
pri[i]=i;
pre[++pre[0]]=i;
}
for(int j=1;j<=pre[0];j++)
{
if(pre[j]>pri[i]||i*pre[j]>2*n)break;
pri[i*pre[j]]=pre[j];
}
}
}
void mul(int x)
{
flag2=0;
for(int i=1;i<=l;i++)
{
flag1=ans[i]*x;
ans[i]=flag1%1000000000000000+flag2;
flag2=flag1/1000000000000000;
}
if(flag2)ans[++l]=flag2;
}
int main()
{
scanf("%d",&n);
pre_work();
for(int i=n+2;i<=2*n;i++)
{
int flag=i;
while(flag>1)
{
wzc[pri[flag]]++;
flag/=pri[flag];
}
}
for(int i=2;i<=n;i++)
{
int flag=i;
while(flag>1)
{
wzc[pri[flag]]--;
flag/=pri[flag];
}
}
for(int i=1;i<=2*n;i++)
for(int j=1;j<=wzc[i];j++)
mul(i);
printf("%lld",ans[l]);
while(--l)printf("%.15lld",ans[l]);
return 0;
}

高精度:

#include<bits/stdc++.h>
using namespace std;
int n,m;
long long a[100000],c[100000];
int mu[5001];
void mul(register int p)
{
register int x=0,j;
for(j=1;j<=a[0];j++)
{
a[j]=a[j]*p+x;
x=a[j]/10;
a[j]%=10;
}
a[j]=x;
while(a[j]>9)
{
a[j+1]=a[j]/10;
a[j]%=10;
j++;
}
while(a[j]==0&&j>1)j--;
a[0]=j;
}
void chu(register int b)
{
register int x=0,s=0,t=0;
memset(c,0,sizeof(c));
for(register int i=1;i<=a[0];i++)
{
x=x*10+a[i];
if(x/b!=0)s++;
if(s==0)continue;
c[++t]=x/b;
x%=b;
}
for(register int i=1;i<=t;i++)
a[i]=c[i];
a[0]=t;
}
int main()
{
a[0]=a[1]=1;
scanf("%d",&n);
for(register int i=n+2;i<=2*n;i++)mul(i);
reverse(a+1,a+a[0]+1);
for(register int i=2;i<=n;i++)chu(i);
for(register int i=1;i<=a[0];i++)printf("%d",a[i]);
}

rp++

[BZOJ2822]:[AHOI2012]树屋阶梯(卡特兰数)的更多相关文章

  1. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  2. bzoj3907 网格 & bzoj2822 [AHOI2012]树屋阶梯——卡特兰数+高精度

    题目:bzoj3907:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 bzoj2822:https://www.lydsy.com/Jud ...

  3. BZOJ2822[AHOI2012]树屋阶梯——卡特兰数+高精度

    题目描述 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为N+1尺(N为 ...

  4. BZOJ2822:[AHOI2012]树屋阶梯(卡特兰数,高精度)

    Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为 ...

  5. [bzoj2822][AHOI2012]树屋阶梯 (卡特兰数+分解质因数+高精度)

    Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为 ...

  6. bzoj 3907 网格 bzoj2822 [AHOI2012]树屋阶梯——卡特兰数(阶乘高精度模板)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 https://www.lydsy.com/JudgeOnline/problem.p ...

  7. bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数

    因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...

  8. P2532 [AHOI2012]树屋阶梯 卡特兰数

    这个题是一个卡特兰数的裸题,为什么呢?因为可以通过划分来导出递推式从而判断是卡特兰数,然后直接上公式就行了.卡特兰数的公式见链接. https://www.luogu.org/problemnew/s ...

  9. 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精

    这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...

  10. Luogu P2532 [AHOI2012]树屋阶梯 卡特兰数

    接着压位OvO... 我不会告诉你答案就是卡特兰数... 为什么呢? 首先,$ans[0]=1,ans[1]=1,ans[2]=2$ 对于$ans[3]$,我们可以发现他是这样来的: $ans[3]= ...

随机推荐

  1. base64 换表 解密脚本

    做逆向经常遇到换表的base64 有了py脚本 一切都好说: import base64 import string str1 = "x2dtJEOmyjacxDemx2eczT5cVS9f ...

  2. C#基础篇之C#和 .Net框架的概念和运行原理

    一.微软平台的发展史 二..Net框架包含的东西 1.名词解释 BCL:基类库(Base Class Library)系统和底层提供的最基本的类库 CLR:公共语言运行时(Common Languag ...

  3. Eureka 源码分析之 Eureka Server

    文章首发于公众号<程序员果果> 地址 : https://mp.weixin.qq.com/s/FfJrAGQuHyVrsedtbr0Ihw 简介 上一篇文章<Eureka 源码分析 ...

  4. java 异常体系详细介绍

    一.异常概述与异常体系结构 异常:在Java语言中,将程序执行中发生的不正常情况称为"异常".(开发过程中的语法错误和逻辑错误不是异常). Java把异常当作对象来处理,并定义一个 ...

  5. easyui 前端分页及前端查询

    1.静态分页核心方法 // 前端分页 -- 将datagrid的loadFilter属性设置为这个方法名即可 function partPurchasePagerFilter(data) { if ( ...

  6. go & AI核心代码

  7. Docker Compose 部署 Redis 及原理讲解 | 懒人屋

    原文:Docker Compose 部署 Redis 及原理讲解 | 懒人屋 Docker Compose 部署 Redis 及原理讲解  4.4k  字    16  分钟    2019-10-1 ...

  8. django前端分页小组件

    # -*- coding:utf-8 -*- from django.utils.safestring import mark_safe class Page(object): def __init_ ...

  9. nohup - 使程序运行时不挂起, 不向 tty 输出信息

    总览 (SYNOPSIS) nohup COMMAND [ARG]... nohup OPTION 描述 (DESCRIPTION) 执行 COMMAND 命令, 忽略 hangup (挂起) 信号. ...

  10. openGL坐标系

    从我们构造模型的局部坐标系(Local/Object Space)经过一系列的处理最终渲染到屏幕坐标系(Screen Space)下,这个过程有6种坐标系. 一.世界坐标系(World Coordin ...