P2523 [HAOI2011]Problem c
先考虑如何判断无解,设 $sum[i]$ 表示确定的人中,编号大于 $i$ 的人的人数
如果 $sum[i]>n-i+1$ 则无解,进一步考虑设 $f[i][j]$ 表示当前确定完编号大于等于 $i$ 的人,除去原本固定的人还有 $j$ 人已经确定
那么有 $f[i][j]=\sum_{k=0}^{j}f[i+1][j-k] \cdot C_{j}^{k},j \in [0,n-i+1-sum[i]]$
表示在确定 $j-k$ 人的编号的情况下,再选 $k$ 个人编号为 $i$,乘上组合数是因为每个人都是不同的,我们可以在 $j$ 个人中任意选择 $k$ 个编号为 $i$
记得组合数每次都要重新算,因为模数不同...
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=;
int T,n,m,mo,sum[N];
ll C[N][N],f[N][N];
inline ll fk(ll x) { return x>=mo ? x-mo : x; }
int main()
{
T=read();
while(T--)
{
memset(f,,sizeof(f)); int a,b,flag=;
memset(sum,,sizeof(sum));
n=read(),m=read(),mo=read();
for(int i=;i<=m;i++)
{
a=read(),b=read();
sum[b]++;
}
for(int i=n;i;i--)
{
sum[i]+=sum[i+];
if(sum[i]>n-i+) { flag=; break; }
}
if(!flag) { printf("NO\n"); continue; }
// f[i][j]+=f[i+1][j-k]*C[j][k]
for(int i=;i<=;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=fk(C[i-][j]+C[i-][j-]);
}
f[n+][]=;
for(int i=n;i>=;i--)
for(int j=;j<=n-i+-sum[i];j++)
for(int k=;k<=j;k++)
f[i][j]=fk(f[i][j]+f[i+][j-k]*C[j][k]%mo);
printf("YES %lld\n",f[][n-m]);
}
return ;
}
P2523 [HAOI2011]Problem c的更多相关文章
- 洛谷P2523 [HAOI2011]Problem c(计数dp)
题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示 ...
- 洛谷 P2523 [HAOI2011]Problem c
洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...
- 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- HAOI2011 problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1047 Solved: 434[Submit][ ...
- BZOJ 2298: [HAOI2011]problem a 动态规划
2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4164 Solved: 1888[Submit] ...
随机推荐
- Java连接Oracle数据库常用方法
JDBC的六大步骤: 注册驱动 获取连接 获取执行sql语句对象 执行sql语句 处理结果集 关闭资源 oracle URL: jdbc:oracle:thin:@localhost:1521:SID ...
- android开机引导界面的几种实现
不少应用在设计的时候都会有几个引导界面,这里总结一下几个典型实现: 之前自己做过仅具有一个引导界面的应用,在welcomeActivity中设置一张图片,更复杂的为该图片设置一个渐入渐出的动画,然后利 ...
- Mysql中经常出现的乱码问题
Mysql中执行SET NAMES utf8这条SQl的作用 1)首先,Mysql服务器的编码和数据库的编码在配置文件my.ini中设置: 用记事本打开配置文件,修改代码:default-charac ...
- JavaScript DOM位置尺寸API
我们需要了解几个基础概念,每个HTML元素都有下列属性 offsetWidth clientWidth scrollWidth offsetHeight clientHeight scrollHeig ...
- shell脚本之浮点数和整数计算
整数计算 直接使用放括号计算即可,省去*号需要使用转义符的麻烦 #!/bin/bash num1= num2= var1=$[ $num1 * $num2 ] echo "$var1&quo ...
- JVM参数配置详解-包含JDK1.8
堆大小设置 JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:6 ...
- ubuntu用mentohust连接ruijie
32位 http://download.csdn.net/detail/yan456jie/8720395 64位 http://download.csdn.net/detail/yan456jie ...
- java kryo序列化与反序列化
https://blog.csdn.net/lan12334321234/article/details/84907492 问题: https://blog.csdn.net/baidu_384041 ...
- 阶段2 JavaWeb+黑马旅游网_15-Maven基础_第5节 使用骨架创建maven的java工程_18maven的java工程取mysql数据库
使用maven创建ava功能,然后读取数据库做一个测试. 我们做的持久层,没有和页面有交互,只做一个java工程就可以了 创建的是java工程,用不用骨架都可以.这里不使用骨架,直接next 直接fi ...
- Centos6.5安装配置svn服务器
一. yum安装svn服务器 yum -y install subversion 二. 检测安装结果 svnserve --version //显示安装结果,表示安装成功了 三. 创建代码仓库目录 m ...