传送门

先考虑如何判断无解,设 $sum[i]$ 表示确定的人中,编号大于 $i$ 的人的人数

如果 $sum[i]>n-i+1$ 则无解,进一步考虑设 $f[i][j]$ 表示当前确定完编号大于等于 $i$ 的人,除去原本固定的人还有 $j$ 人已经确定

那么有 $f[i][j]=\sum_{k=0}^{j}f[i+1][j-k] \cdot C_{j}^{k},j \in [0,n-i+1-sum[i]]$

表示在确定 $j-k$ 人的编号的情况下,再选 $k$ 个人编号为 $i$,乘上组合数是因为每个人都是不同的,我们可以在 $j$ 个人中任意选择 $k$ 个编号为 $i$

记得组合数每次都要重新算,因为模数不同...

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=;
int T,n,m,mo,sum[N];
ll C[N][N],f[N][N];
inline ll fk(ll x) { return x>=mo ? x-mo : x; }
int main()
{
T=read();
while(T--)
{
memset(f,,sizeof(f)); int a,b,flag=;
memset(sum,,sizeof(sum));
n=read(),m=read(),mo=read();
for(int i=;i<=m;i++)
{
a=read(),b=read();
sum[b]++;
}
for(int i=n;i;i--)
{
sum[i]+=sum[i+];
if(sum[i]>n-i+) { flag=; break; }
}
if(!flag) { printf("NO\n"); continue; }
// f[i][j]+=f[i+1][j-k]*C[j][k]
for(int i=;i<=;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=fk(C[i-][j]+C[i-][j-]);
}
f[n+][]=;
for(int i=n;i>=;i--)
for(int j=;j<=n-i+-sum[i];j++)
for(int k=;k<=j;k++)
f[i][j]=fk(f[i][j]+f[i+][j-k]*C[j][k]%mo);
printf("YES %lld\n",f[][n-m]);
}
return ;
}

P2523 [HAOI2011]Problem c的更多相关文章

  1. 洛谷P2523 [HAOI2011]Problem c(计数dp)

    题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示 ...

  2. 洛谷 P2523 [HAOI2011]Problem c

    洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...

  3. 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...

  4. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  5. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  6. HAOI2011 problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1047  Solved: 434[Submit][ ...

  7. BZOJ 2298: [HAOI2011]problem a 动态规划

    2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4164  Solved: 1888[Submit] ...

随机推荐

  1. BZOJ 3193: [JLOI2013]地形生成 计数 + 组合 + 动态规划

    第一问: 先不考虑山的高度有相同的:直接按照高度降序排序,试着将每一座山插入到前面山的缝隙中. 当然,这并不代表这些山的相对位置是固定的,因为后面高度更低的山是有机会插入进来的,所以就可以做到将所有情 ...

  2. POJ 2182 Lost Cows (树状数组 && 二分查找)

    题意:给出数n, 代表有多少头牛, 这些牛的编号为1~n, 再给出含有n-1个数的序列, 每个序列的数 ai 代表前面还有多少头比 ai 编号要小的牛, 叫你根据上述信息还原出原始的牛的编号序列 分析 ...

  3. ArrayList遍历的三种方法

    在输出很多的ArrayList的元素时,用普通的for循环太麻烦,因此本文介绍三种遍历ArrayList的方法 package test; public class Student { private ...

  4. AtCoder AGC001F Wide Swap (线段树、拓扑排序)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_f 题解: 先变成排列的逆,要求\(1\)的位置最小,其次\(2\)的位置最小,依次排下去( ...

  5. Spring Cloud云架构 - SSO单点登录之OAuth2.0登录认证(1)

    今天我们对OAuth2.0的整合方式做一下笔记,首先我从网上找了一些关于OAuth2.0的一些基础知识点,帮助大家回顾一下知识点: 一.oauth中的角色 client:调用资源服务器API的应用 O ...

  6. es之批量提交操作

    1:批量查询操作 1):插入测试数据 PUT /costumer/doc/1{ "name": "zhangsan", "age": 20} ...

  7. python数据类型之可hash,不可hash

    可变类型的数据不可哈希,如list,字典:同值不同址,不同值同址   列表,字典可变, 数值.字母.字符串.数字.元组不可变:同值同址,不同值不同址 怎么判断可变不可变 ?   总结:改个值 看id是 ...

  8. 高级软件测试技术-任务进度-Day02

    任务进度11-14 使用工具 Jira 小组成员 华同学.郭同学.穆同学.沈同学.覃同学.刘同学 任务进度 在经过了昨天的基本任务分配之后,今天大家就开始了各自的内容,以下是大家任务的进度情况汇总. ...

  9. SVN appears to be part of a Subversion 问题心得

    昨天更新了下项目,但同时又增加了一个Java工程,我就在本地单独导出到workspace同目录下:结果第二天提交代码的时候,提示如下错误 svn: E155021: The path 'xxx' ap ...

  10. tp3.2 页面Windows正常 linux异常,页面找不到

    这个问题主要是tp3.2 在读取控制器里的方法时,会把方法自动转为小写, 然后去对应view成找html文件,自然找不到. class textController extends ComContro ...