UOJ37. 【清华集训2014】主旋律
题解
题目是让我们求出有多少个边集可以使这张图强连通。
先补集转化一下,求这张图不强连通的方案数。
我们考虑这样的图缩完点之后的情况,既然不强连通,那么它就是个\(DAG\)。
回顾一下有向图\(DAG\)计数的方法。
每次新加入一层入度为\(0\)的点,向之前的点连边。但这时我们不能保证我们枚举的点就是全部入度为\(0\)的,所以我们还需要容斥。
\]
再次观察到容斥系数之和点数的奇偶性有关,因为此时我们的每个点已经是一个强连通分量了。
所以我们设\(deg[s]\)表示\(s\)集合是一个\(DAG\),如果求出了这个数组,那么我们用全集减去它就是答案了。
我们再设\(D[s]\)表示\(s\)集合被划分为奇数个强连通分量的方案数,\(S[s]\)表示划分为偶数个强连通分量的方案数。
转移:
\]
最后加上自己连自己的方案数是因为我们的容斥系数已经弄好了,只需要让\(S-T\)缩完点之后成为一个\(DAG\)就行了,所以合法的边集是全集。
我们最后的答案\(f[s]\)表示\(s\)集合强连通的方案数,\(D\)和\(S\)的转移有:
\]
\]
代码
#include<bits/stdc++.h>
#define N 16
#define M 225
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int n,m;
ll D[1<<N],S[1<<N],ci[N*N],f[1<<N];
bitset<M>in[1<<N],out[1<<N];
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline int calc(int s,int t){return (out[s]&in[t]).count();}
int main(){
n=rd();m=rd();
int u,v;
int maxn=(1<<n)-1;
ci[0]=1;
for(int i=1;i<=n*n;++i)ci[i]=ci[i-1]*2%mod;
for(int i=1;i<=m;++i){
u=rd();v=rd();
for(int j=1;j<=maxn;++j){
if(j&(1<<u-1))out[j][i]=1;
if(j&(1<<v-1))in[j][i]=1;
}
}
S[0]=1;
for(int i=1;i<=maxn;++i){
f[i]=ci[calc(i,i)];
for(int s=(i-1)&i;s;s=(s-1)&i){
MOD(f[i]=(f[i]-(D[s]-S[s])*ci[calc(s,i-s)+calc(i-s,i-s)]%mod+mod));
if((s&(i&-i))==0)continue;
MOD(D[i]+=f[s]*S[i-s]%mod);
MOD(S[i]+=f[s]*D[i-s]%mod);
}
MOD(f[i]=(f[i]-(D[i]-S[i]))%mod+mod);
MOD(D[i]+=f[i]);
}
cout<<f[maxn];
return 0;
}
UOJ37. 【清华集训2014】主旋律的更多相关文章
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- BZOJ3812 清华集训2014 主旋律
直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...
- 【UOJ#37】 [清华集训2014] 主旋律
题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- 清华集训2014 day1 task2 主旋律
题目 这可算是一道非常好的关于容斥原理的题了. 算法 好吧,这题我毫无思路,直接给正解. 首先,问题的正面不容易求,那么就求反面吧: 有多少种添加边的方案,使得这个图是DAG图(这里及以下所说的DAG ...
- UOJ#37. 【清华集训2014】主旋律
题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保 ...
随机推荐
- Java基础/时间日期格式
Java时间日期格式转换 一.Date转String和String转Date 参考博客:https://www.cnblogs.com/sharpest/p/7879377.html public s ...
- Mysql 5.7存储过程的学习
存储过程:对sql的封装和重用,经编译创建并保存在数据库中,通过指定存储过程的名字并给定参数(需要时)来调用执行. 优缺点: (1) 优点: 执行速度快------存储过程只在创建时进行编译,以后每次 ...
- Tarjan水题系列(1):草鉴定Grass Cownoisseur [USACO15JAN]or[luogu P3119]
题目如下: 约翰有n块草场,编号1到n,这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草. 贝西总是从1号草场出发,最后回到1号草场.她想经过尽可能多的草场,贝 ...
- 三、JVM — 类加载过程
类加载过程 加载 验证 准备 解析 初始化 类加载过程 Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢? 系统加载 Class 类型的文件主要三步: ...
- Node.js连接RabbitMQ,断线重连,动态绑定routing key
RabbitMQ官方提供的教程https://www.rabbitmq.com/tuto...,是基于回调的. 下面将给出基于Promise式的写法.并且实现动态的队列绑定 初始化配置 const a ...
- angularJS(一):表达式、指令
简介 以 JavaScript 编写的库,是一个 JavaScript 框架 一.表达式 AngularJS 使用 表达式 把数据绑定到 HTML. 表达式写在双大括号内:{{ expression ...
- phonetic
Simple Classification of English Vowels and Consonants 1.Classifation of English Vowels a)Monophtong ...
- 内置的configparser模块和hashlib模块
#configparser模块:配置解析模块 import configparser config = configparser.ConfigParser() #创建一个配置解析对象 config[& ...
- IsNumeric 函数
VB IsNumeric 判断数字函数功能详解: IsNumeric 函数 函数功能: 返回 Boolean 值,指出表达式的运算结果是否为数. 函数语法: IsNumeric (ex ...
- TFServering和docker
nvidia-docker安装:https://github.com/NVIDIA/nvidia-docker nvidia-docker的基本操作:https://blog.csdn.net/pan ...