Easy sssp
Easy sssp
时间限制: 1 Sec 内存限制: 128 MB
提交: 103 解决:
20
[提交][状态][讨论版]
题目描述
输入数据给出一个有N(2 < = N < = 1,000)个节点,M(M < = 100,000)条边的带权有向图.
要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一个点沿着某条路径出发, 又回到了自己, 而且所经过的边上的权和小于0,
就说这条路是一个负权回路. 如果存在负权回路, 只输出一行-1; 如果不存在负权回路, 再求出一个点S(1 < = S < =
N)到每个点的最短路的长度. 约定: S到S的距离为0, 如果S与这个点不连通, 则输出NoPath.
输入
第一行: 点数N(2 < = N < = 1,000), 边数M(M < = 100,000), 源点S(1
< = S < = N); 以下M行, 每行三个整数a, b, c表示点a, b(1 < = a, b < =
N)之间连有一条边, 权值为c(-1,000,000 < = c < = 1,000,000)
输出
如果存在负权环, 只输出一行-1, 否则按以下格式输出 共N行, 第i行描述S点到点i的最短路: 如果S与i不连通, 输出NoPath;
如果i = S, 输出0; 其他情况输出S到i的最短路的长度.
样例输入
6 8 1
1 3 4
1 2 6
3 4 -7
6 4 2
2 4 5
3 6 3
4 5 1
3 5 4
样例输出
0
6
4
-3
-2
7
提示
做这道题时, 你不必为超时担心, 不必为不会算法担心, 但是如此“简单”的题目, 你究竟能ac么?
题解:这是一道spfa的题目吧,考点是spfa的应用和spfa判断负权回路的问题,每个块都判断一次,若其中有一个块存在负权回路,则直接输出NoPath;如果不存在,则输出最短路即可。
spfa判断负环应该都知道吧,一个点如果进栈n次则存在负环。
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<string>
#include<cstring> using namespace std;
const int MAXN=,MAXM=; int num,first[MAXN],next[MAXM],arr[MAXM],cost[MAXM];
int times[MAXN];
int n,m,st;
int p[MAXN];
bool boo[MAXN],he[MAXN];
long long dis[MAXN]; void add(int u,int v,int z)
{
num++;
next[num]=first[u];
first[u]=num;
arr[num]=v;
cost[num]=z;
}
void init()
{
memset(he,,sizeof(he));
memset(times,,sizeof(times));
memset(boo,,sizeof(boo));
memset(next,,sizeof(next));
memset(arr,,sizeof(arr));
memset(cost,,sizeof(cost));
for (int i=;i<=n;i++)
first[i]=-;
num=;
for (int i=;i<=n;i++)
dis[i]=;
dis[st]=;
}
bool pan(int st)
{
int head=,tail=;
p[tail]=st,boo[st]=;
times[st]++; while (head!=tail)
{
head=head%n+;
int u=p[head],v;
for (int i=first[u];i!=-;i=next[i])
{
v=arr[i];
if (dis[u]+cost[i]<dis[v])
{
dis[v]=dis[u]+cost[i];
if (boo[v]==)
{
times[v]++;
if (times[v]>=n)
{
return ;
}
boo[v]=;
tail=tail%n+;
p[tail]=v;
}
}
}
boo[u]=;
}
for (int i=;i<=n;i++)
if (dis[i]<) he[i]=;
return ;
}
void solve(int st)
{
int head=,tail=;
p[tail]=st,boo[st]=; while (head!=tail)
{
head=head%n+;
int u=p[head],v;
for (int i=first[u];i!=-;i=next[i])
{
v=arr[i];
if (dis[u]+cost[i]<dis[v])
{
dis[v]=dis[u]+cost[i];
if (boo[v]==)
{
boo[v]=;
tail=tail%n+;
p[tail]=v;
}
}
}
boo[u]=;
}
for (int i=;i<=n;i++)
if (dis[i]==) printf("NoPath\n");
else printf("%lld\n",dis[i]);
}
int main()
{
scanf("%d%d%d",&n,&m,&st);
init(); int x,y,z;
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
for (int i=;i<=n;i++)
if (he[i]==)
{
for (int i=;i<=n;i++)
dis[i]=;
dis[i]=;
if (pan(i))
{
printf("-1\n");
return ;
}
memset(boo,,sizeof(boo));
memset(times,,sizeof(times));
}
for (int i=;i<=n;i++)
dis[i]=;
dis[st]=;
solve(st);
}
Easy sssp的更多相关文章
- vijosP1053 Easy sssp
vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...
- Easy sssp(spfa)(负环)
vijos 1053 Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...
- SPFA_YZOI 1662: Easy sssp
题目描述 输入数据给出一个有N(2 < = N < = 1,000)个节点,M(M < = 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是 ...
- Vijos1053 Easy sssp[spfa 负环]
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- Loj10086 Easy SSSP
试题描述 输入数据给出一个有 N 个节点,M 条边的带权有向图.要求你写一个程序,判断这个有向图中是否存在负权回路.如果从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于 0,就说 ...
- vijos 1053 Easy sssp
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- Easy sssp(vijos 1053)
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- Vijos——T1053 Easy sssp
https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...
- Easy sssp(spfa判负环与求最短路)
#include<bits/stdc++.h> using namespace std; int n,m,s; struct node{ int to,next,w; }e[]; bool ...
随机推荐
- 【 DCOS 】织云 CMDB 管理引擎技术详解
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者 : 李琦 , 腾讯高级工程师 , 就职于网络平台部.曾负责公司海量运营系统的规划设计,如 TMP.Sniper.GSLB.IDCSp ...
- ABP 框架学习-01篇
从来没有自己写过太多的技术性文章,博客里面的文章都是拷贝别人的东西,做一个笔记功能给自己用的.最近觉得应该写点自己的学习博客 https://aspnetboilerplate.com/ ABP框架, ...
- Linux下设置Tomcat虚拟路径
问题描述:我在上传图片的位置不在Tomcat服务器下,用户无法访问 解决方案:配置Tomcat虚拟路径使用户可以访问图片 配置Tomcat # cd /usr/local/apache-tomcat- ...
- JavaScript二维码生成——qrcode.js
在开发中,有时候,我们需要根据不同的内容来动态生成二维码,则可以使用qrcode.js这个小插件来实现. 1.qrcode.js文件内容: (1)未压缩(qrcode.js): /** * @file ...
- 浏览器console的用法
Leo_wlCnBlogs 自由.创新.研究.探索 Linux/Windows Mono/DotNet [ Open Source .NET Development/ 使用开源工具进行DotNet软件 ...
- (1)ES6中let,const,对象冻结,跨模块常量,新增的全局对象介绍
1.let声明变量,var声明变量,而const声明的常量 2.let与var的区别 let可以让变量长期驻扎在内存当作 let的作用域是分块[ {快1 {快2 } }每个大括号表示一个独立的块 ...
- MongoDB学习之路(五)
MongoDB $type 操作符 类型 数字 备注 Double 1 String 2 Object 3 Array 4 Binary data 5 Undefined 6 已废弃 Object i ...
- Unity黑巧克力 滚球游戏 入门级教程
<黑巧克力>系列教程是适合于新手上手Unity的教程,本教程适合作为初次接触Unity(零基础)的第一篇的教程.学习本教程需要有的基础是:线性代数.编程基础.Csharp语言基础.Unit ...
- 团队作业1——团队展示&博客作业查重系统
团队展示: 1.队名:六个核桃 2.队员学号: 王婧(201421123065).柯怡芳(201421123067组长).陈艺菡(201421123068). 钱惠(201421123071).尼玛( ...
- Swing-JMenu菜单用法-入门
菜单是Swing客户端程序不可获取的一个组件.窗体菜单大致由菜单栏.菜单和菜单项三部分组成,如下图所示: 由图可见,对于一个窗体,首先要添加一个JMenuBar,然后在其中添加JMenu,在JMenu ...