Description

著名游戏设计师vfleaking,最近迷上了Nim。普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。于是vfleaking决定写一个玩Nim游戏的平台来坑玩家。
为了设计漂亮一点的初始局面,vfleaking用以下方式来找灵感:拿出很多石子,把它们聚成一堆一堆的,对每一堆编号1,2,3,4,...n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:
1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。
由于vfleaking太懒了,他懒得自己动手了。请写个程序帮帮他吧。

Input

第一行一个数n,表示有多少堆石子。
接下来的一行,第i个数表示第i堆里有多少石子。
接下来n-1行,每行两个数v,u,代表v,u间有一条边直接相连。
接下来一个数q,代表操作的个数。
接下来q行,每行开始有一个字符:
如果是Q,那么后面有两个数v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略。
如果是C,那么后面有两个数v,k,代表把堆v中的石子数变为k。

对于100%的数据:
1≤N≤500000, 1≤Q≤500000, 0≤任何时候每堆石子的个数≤32767
其中有30%的数据:
石子堆组成了一条链,这3个点会导致你DFS时爆栈(也许你不用DFS?)。其它的数据DFS目测不会爆。
注意:石子数的范围是0到INT_MAX

Output

对于每个Q,输出一行Yes或No,代表对询问的回答。

Sample Input

【样例输入】
5
1 3 5 2 5
1 5
3 5
2 5
1 4
6
Q 1 2
Q 3 5
C 3 7
Q 1 2
Q 2 4
Q 5 3

Sample Output

Yes
No
Yes
Yes
Yes

题解:

  首先nim游戏,异或值为0,先手必败,否则必胜。
  然后就是裸树剖。/也可以倍增,节点值修改只对子树产生贡献,所以dfs序存起来,然后记录每个节点统辖范围,然后树状数组差分添加即可。
【注】大视野不会爆栈。。。。。。
  

 #include<cstdio>
#include<iostream>
inline int read(){
int s=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='') s=s*+ch-,ch=getchar();
return s;
}
const int N=;
struct edges{
int v;edges *last;
}edge[N<<],*head[N];int cnt;
inline void add_edge(int u,int v){
edge[++cnt].v=v;edge[cnt].last=head[u];
head[u]=edge+cnt;
}
int a[N];
int n;
int dep[N],f[N][];
int num,l[N],r[N];
int c[N];
inline void add(int x,int w)
{
for(int i=x;i<=n;i+=i&-i)
c[i]^=w; }
inline int query(int x){
int ans=;
for(int i=x;i;i-=i&-i)
ans^=c[i];
return ans;
}
void dfs(int x)
{
l[x]=++num;
for(int i=;(<<i)<=dep[x];i++){
f[x][i]=f[f[x][i-]][i-];
}
for(edges *i=head[x];i;i=i->last){
if(f[x][]==i->v) continue ;
dep[i->v]=dep[x]+;
f[i->v][]=x;
dfs(i->v);
}
r[x]=num;
}
inline int lca(int x,int y)
{
if(dep[x]<dep[y]) std::swap(x,y);
int t=dep[x]-dep[y];
for(int i=;t;i++)
if((<<i)&t){t^=(<<i);x=f[x][i];}
if(x==y) return x;
for(int i=;i>=;i--){
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
}
return f[x][];
}
int main(){
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=,u,v;i<n;i++)
{
u=read(),v=read();
add_edge(u,v);add_edge(v,u);
}
dfs(); for(int i=;i<=n;i++){
add(l[i],a[i]);add(r[i]+,a[i]);
}
int q;char op[];
q=read();
while(q--){
int u,v;
scanf("%s",op);
u=read(),v=read();
if(op[]=='Q'){
int t=lca(u,v);
int ans=query(l[u])^query(l[v])^a[t];
if(ans)puts("Yes");
else puts("No");
}
else{
add(l[u],a[u]);add(r[u]+,a[u]);
a[u]=v;
add(l[u],a[u]);add(r[u]+,a[u]);
}
}
}

【bzoj2819】Nim的更多相关文章

  1. 【BZOJ2819】Nim 树状数组+LCA

    [BZOJ2819]Nim Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可 ...

  2. 【bzoj2819】Nim DFS序+树状数组+倍增LCA

    题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...

  3. 【bzoj2819】 Nim

    www.lydsy.com/JudgeOnline/problem.php?id=2819 (题目链接) 题意 动态树上路径异或和. Solution Nim取石子游戏的sg值就是每堆石子的异或和,所 ...

  4. 【bzoj2819】Nim(dfs序+树状数组/线段树)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...

  5. 【HDU3032】Nim or not Nim?(博弈论)

    [HDU3032]Nim or not Nim?(博弈论) 题面 HDU 题解 \(Multi-SG\)模板题 #include<iostream> #include<cstdio& ...

  6. 洛谷 P2197 【模板】nim游戏 解题报告

    P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...

  7. 【POJ】【2068】Nim

    博弈论/DP 这是Nim?这不是巴什博奕的变形吗…… 我也不会捉啊,不过一看最多只有20个人,每人最多拿16个石子,总共只有8196-1个石子,范围好像挺小的,嗯目测暴力可做. so,记忆化搜索直接水 ...

  8. 【POJ】【2975】Nim

    博弈论 我哭……思路错误WA了6次?(好像还有手抖点错……) 本题是要求Nim游戏的第一步必胜策略有几种. 一开始我想:先全部异或起来得到ans,从每个比ans大的堆里取走ans个即可,答案如此累计… ...

  9. 【BZOJ】【2819】NIM

    这题……咋说捏,其实是一道披着博弈论外衣的树上操作问题…… 随便用dfs序或者树链剖分转成序列,然后查询路径上的所有点的NIM和(异或和)就行了,毕竟除了是在树上以外,就是裸的NIM问题. 树链剖分: ...

随机推荐

  1. nginx之 nginx + tomcat + redis 负载均衡且session一致性

    说明: 本文描述的是 nginx + tomcat + redis 实现应用负载均衡且满足session一致性,从安装到配置的全部过程,供大家学习!nginx 代理服务器ip: 10.219.24.2 ...

  2. springmvc 之 SpringMVC视图解析器

    当我们对SpringMVC控制的资源发起请求时,这些请求都会被SpringMVC的DispatcherServlet处理,接着Spring会分析看哪一个HandlerMapping定义的所有请求映射中 ...

  3. OFFICE 文档转换为html在线预览

    OFFICE 文档在线预览方案很多: 服务器先转换为PDF,再转换为SWF,最后通过网页加载Flash预览,比如flexpaper Office文档直接转换为SWF,通过网页加载Flash预览 微软的 ...

  4. 计时器60s

    计时器是经常用到的功能,下面以react nativ的例子简介来写一个倒计时60s的小demo. 代码如下: import React, { Component } from 'react'; imp ...

  5. PHP中常量和变量的区别

    1.常量只能赋一次值: 以下是申请常量的两种方法: const THE_VALUE="one"; define("THE_VALUE","one&qu ...

  6. Filter自动登录

    Dao层略过 Domain略过 Service层过 Web层 Select逻辑 获取表单数据,Web-service--Dao返回用户信息 如果返回不为null否则,重定向到登录页面.则判断用户是否勾 ...

  7. Angular中使用Swiper不能滑动的解决方法

    Swiper是目前较为流行的移动端触摸滑动插件,因为其简单好用易上手,很受很多设计师的欢迎. 今天在使用Swiper的时候遇到这个问题: 使用angularjs动态循环生成swiper-slide类, ...

  8. 把angular项目整合到.net mvc中

    之前的开发选择的是完全舍弃服务端,仅保留最简单web服务器提供angular经打包的静态资源,此外所有的业务与数据请求都访问一个分离的WebApi来实现.不过最近碰到一个需求,有必要使用多个客户端,而 ...

  9. 如何查询oracle中的关键字

    如何查询oracle中的关键字,执行: select * from v$reserved_words

  10. CSS学习笔记05 display属性

    HTML标记一般分为块标记和行内标记两种类型,它们也称块元素和行内元素. 块元素 每个块元素通常都会独自占据一整行或多整行,可以对其设置宽度.高度.对齐等属性,常用于网页布局和网页结构的搭建.并且块级 ...