概要

  • 了解数据
  • 分析数据问题
  • 清洗数据
  • 整合代码

了解数据

在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的。我们尝试去理解数据的列/行、记录、数据格式、语义错误、缺失的条目以及错误的格式,这样我们就可以大概了解数据分析之前要做哪些“清理”工作。

本次我们需要一个 patient_heart_rate.csv (链接:https://pan.baidu.com/s/1geX8oYf 密码:odj0)的数据文件,这个数据很小,可以让我们一目了然。这个数据是 csv 格式。数据是描述不同个体在不同时间的心跳情况。数据的列信息包括人的年龄、体重、性别和不同时间的心率。

import pandas as pd
df = pd.read_csv('../data/patient_heart_rate.csv')
df.head()

分析数据问题

  1. 没有列头
  2. 一个列有多个参数
  3. 列数据的单位不统一
  4. 缺失值
  5. 空行
  6. 重复数据
  7. ASCII 字符
  8. 有些列头应该是数据,而不应该是列名参数

清洗数据

下面我们就针对上面的问题一一击破。

1. 没有列头

如果我们拿到的数据像上面的数据一样没有列头,Pandas 在读取 csv 提供了自定义列头的参数。下面我们就通过手动设置列头参数来读取 csv,代码如下:

import pandas as pd
# 增加列头
column_names= ['id', 'name', 'age', 'weight','m0006','m0612','m1218','f0006','f0612','f1218']
df = pd.read_csv('../data/patient_heart_rate.csv', names = column_names)
df.head()

上面的结果展示了我们自定义的列头。我们只是在这次读取 csv 的时候,多了传了一个参数 names = column_names,这个就是告诉 Pandas 使用我们提供的列头。

2. 一个列有多个参数

在数据中不难发现,Name 列包含了两个参数 Firtname 和 Lastname。为了达到数据整洁目的,我们决定将 name 列拆分成 Firstname 和 Lastname

从技术角度,我们可以使用 split 方法,完成拆分工作。

我们使用 str.split(expand=True),将列表拆成新的列,再将原来的 Name 列删除

# 切分名字,删除源数据列
df[['first_name','last_name']] = df['name'].str.split(expand=True)
df.drop('name', axis=1, inplace=True)

上面就是执行执行代码之后的结果。

3. 列数据的单位不统一

如果仔细观察数据集可以发现 Weight 列的单位不统一。有的单位是 kgs,有的单位是 lbs

# 获取 weight 数据列中单位为 lbs 的数据
rows_with_lbs = df['weight'].str.contains('lbs').fillna(False)
df[rows_with_lbs]

为了解决这个问题,将单位统一,我们将单位是 lbs 的数据转换成 kgs。

# 将 lbs 的数据转换为 kgs 数据

for i,lbs_row in df[rows_with_lbs].iterrows():
weight = int(float(lbs_row['weight'][:-3])/2.2)
df.at[i,'weight'] = '{}kgs'.format(weight)

4. 缺失值

在数据集中有些年龄、体重、心率是缺失的。我们又遇到了数据清洗最常见的问题——数据缺失。一般是因为没有收集到这些信息。我们可以咨询行业专家的意见。典型的处理缺失数据的方法:

5. 空行

仔细对比会发现我们的数据中一行空行,除了 index 之外,全部的值都是 NaN。

Pandas 的 read_csv() 并没有可选参数来忽略空行,这样,我们就需要在数据被读入之后再使用 dropna() 进行处理,删除空行.

# 删除全空的行
df.dropna(how='all',inplace=True)

6. 重复数据

有的时候数据集中会有一些重复的数据。在我们的数据集中也添加了重复的数据。

首先我们校验一下是否存在重复记录。如果存在重复记录,就使用 Pandas 提供的 drop_duplicates() 来删除重复数据。

# 删除重复数据行
df.drop_duplicates(['first_name','last_name'],inplace=True)

7. ASCII 字符

在数据集中 Fristname 和 Lastname 有一些非 ASCII 的字符。

处理非 ASCII 数据方式有多种

  • 删除
  • 替换
  • 仅仅提示一下

我们使用删除的方式:

# 删除非 ASCII 字符
df['first_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
df['last_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)

8. 有些列头应该是数据,而不应该是列名参数

有一些列头是有性别和时间范围组成的,这些数据有可能是在处理收集的过程中进行了行列转换,或者收集器的固定命名规则。这些值应该被分解为性别(m,f),小时单位的时间范围(00-06,06-12,12-18)

# 切分 sex_hour 列为 sex 列和 hour 列
sorted_columns = ['id','age','weight','first_name','last_name']
df = pd.melt(df,
id_vars=sorted_columns,var_name='sex_hour',value_name='puls_rate').sort_values(sorted_columns)
df[['sex','hour']] = df['sex_hour'].apply(lambda x:pd.Series(([x[:1],'{}-{}'.format(x[1:3],x[3:])])))[[0,1]]
df.drop('sex_hour', axis=1, inplace=True)

# 删除没有心率的数据
row_with_dashes = df['puls_rate'].str.contains('-').fillna(False)
df.drop(df[row_with_dashes].index,
inplace=True)


整合代码

import pandas as pd
# 增加列头
column_names= ['id', 'name', 'age', 'weight','m0006','m0612','m1218','f0006','f0612','f1218']
df = pd.read_csv('../data/patient_heart_rate.csv', names = column_names)

# 切分名字,删除源数据列
df[['first_name','last_name']] = df['name'].str.split(expand=True)
df.drop('name', axis=1, inplace=True)

# 获取 weight 数据列中单位为 lbs 的数据
rows_with_lbs = df['weight'].str.contains('lbs').fillna(False)
df[rows_with_lbs]

# 将 lbs 的数据转换为 kgs 数据
for i,lbs_row in df[rows_with_lbs].iterrows():
weight = int(float(lbs_row['weight'][:-3])/2.2)
df.at[i,'weight'] = '{}kgs'.format(weight) # 删除全空的行
df.dropna(how='all',inplace=True)

# 删除重复数据行
df.drop_duplicates(['first_name','last_name'],inplace=True)

# 删除非 ASCII 字符
df['first_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
df['last_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)

# 切分 sex_hour 列为 sex 列和 hour 列
sorted_columns = ['id','age','weight','first_name','last_name']
df = pd.melt(df,
id_vars=sorted_columns,var_name='sex_hour',value_name='puls_rate').sort_values(sorted_columns)
df[['sex','hour']] = df['sex_hour'].apply(lambda x:pd.Series(([x[:1],'{}-{}'.format(x[1:3],x[3:])])))[[0,1]]
df.drop('sex_hour', axis=1, inplace=True)

# 删除没有心率的数据
row_with_dashes = df['puls_rate'].str.contains('-').fillna(False)
df.drop(df[row_with_dashes].index,
inplace=True)

# 重置索引,不做也没关系,主要是为了看着美观一点
df = df.reset_index(drop=True)
print(df)

还有一些问题在本例中没有提及内容,下面有两个比较重要,也比较通用的问题:

  • 日期的处理
  • 字符编码的问题

本次又介绍了一些关于 Pandas 清洗数据的技能。至少用这几次介绍的处理方法,应该可以对数据做很多清洗工作。

更多关于数据清洗的内容可以关注知乎上的专栏“数据清洗

知乎数据清洗- Pandas 清洗“脏”数据(二)

[数据清洗]- Pandas 清洗“脏”数据(二)的更多相关文章

  1. [数据清洗]- Pandas 清洗“脏”数据(三)

    预览数据 这次我们使用 Artworks.csv ,我们选取 100 行数据来完成本次内容.具体步骤: 导入 Pandas 读取 csv 数据到 DataFrame(要确保数据已经下载到指定路径) D ...

  2. [数据清洗]-Pandas 清洗“脏”数据(一)

    概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可 ...

  3. [数据清洗]-使用 Pandas 清洗“脏”数据

    概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可 ...

  4. Linux 根目录所在分区被脏数据占满

    背景: ​ 公司在做一个项目,大概功能就是一个通行闸机的人脸识别系统,要经过门禁的人注册了之后,系统就会存储一张原始的图片在服务器的数据文件夹里面,包括了永久的存储和一些访客注册临时存储.一天周五的时 ...

  5. 【转】Pandas学习笔记(二)选择数据

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  6. 如何使用R语言解决可恶的脏数据

    转自:http://shujuren.org/article/45.html 在数据分析过程中最头疼的应该是如何应付脏数据,脏数据的存在将会对后期的建模.挖掘等工作造成严重的错误,所以必须谨慎的处理那 ...

  7. Python利用pandas处理Excel数据的应用

    Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...

  8. 【python基础】利用pandas处理Excel数据

    参考:https://www.cnblogs.com/liulinghua90/p/9935642.html 一.安装第三方库xlrd和pandas 1:pandas依赖处理Excel的xlrd模块, ...

  9. Python3 Pandas的DataFrame数据的增、删、改、查

    Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只 ...

随机推荐

  1. HTML的iframe标签妙用 - 在线执行前端代码的网站原理是什么?

    在我自己的日常前端开发中,其实iframe标签出现的次数并不是很多.作为一个很古老(浏览器兼容性非常好)的标签,有必要去了解一下它的典型应用场景. (图片说明:所有浏览器都支持iframe,无论什么版 ...

  2. 小白关于python 对象和内存的关系的一些感悟和疑惑,望大神指教

    首先你输入了一个字符串,这个字符串是有大小的,电脑将其放在内存中,自动给其一个起始指针指向这个字符串的首位置,然后,你将这个字符串赋值给一个变量,这个对象又在内存中开辟出一个空间,这个变量会自动连接这 ...

  3. POJ 3061 Subsequence 尺取法 POJ 3320 Jessica's Reading Problem map+set+尺取法

    Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13955   Accepted: 5896 Desc ...

  4. 使用.Net Core+EF7 CodeFirst(2)

    上一篇的话,说了下怎么使用EF7 实现 CodeFirst去生成数据库, 其实还有好多问题的,这次一点一点的解决吧,都挺简单,不过零零散散的,, 1.读取配置文件,获得链接字符串 2.使用数据库进行增 ...

  5. Property list types and their various representations

    iOS下Property list能够存储的数据类型  Property list types and their various representations  Abstract type XML ...

  6. XML解析之SAX

    今天在敲代码的时候,想要实现地址选择功能,就是那个能够选择省.市.县的一个,用到的一个开源框架Android-PickerView,当然他这个里面尽管实现了能够选择的城市列表.可是他这是自己创建的,可 ...

  7. Python 爬虫 爬校花网!!

    爬虫:是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本 1.福利来了  校花网 ,首先说为什么要爬这个网站呢,第一这个网站简单爬起来容易不会受到打击,第二呢 你懂得... 1.第一步,需要下载 ...

  8. tomcat加入系统服务+开机自启

    1.首先将tomcat/bin 下的catalina.sh复制到目录/etc/init.d中,并修改名称为tomcat [root@iZ2318 ~]# sudo cp /usr/local/tomc ...

  9. 自学Zabbix3.9.2-模板Templates-linking/unlinking

    自学Zabbix3.9.2-模板Templates-linking/unlinking HOST链接模板之后,便继承了模板里定义的item,trigger等等,使用这个方法,配置zabbix监控会减少 ...

  10. .net core系列之初识asp.net core

    .net core已经发布了2.0版本,相对于1.0的有了很大的完善,最近准备在项目中尝试使用asp.net core,所以就进行了一些简单的研究. 初识asp.net core分为以下几个部分: 1 ...