ZOJ 3195 Design the city 题解
这个题目大意是:
有N个城市,编号为0~N-1,给定N-1条无向带权边,Q个询问,每个询问求三个城市连起来的最小权值。
多组数据 每组数据 1 < N < 50000 1 < Q < 70000;
一道多源最短路的题目,注意题目数据:N、Q都很大
不能考虑Floyd、SPFA、Dijkstra、Bellman-Ford等最短路算法
再看N-1条边,明显构成一棵树,最短路有且只有一条
很明显需要LCA....
我们所熟知的LCA是求两个点的最短路,而该题稍微变形,要求三个点
所以我们可以两两求LCA,然后把三个dist值加起来除以二
而两点的dist值是这样算的:dist[a]+dist[b]-2*dist[LCA(a,b)]
代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 200010
#define M 600010
using namespace std;
struct DATA
{
int from,to,dis,next,i;
}road[N],ques[M];
int dist[N],head1[N],head2[M],f[N],ans[M],n,q,len1,len2,fun=;
bool vis[N],book[M],found[N];
void add1(int a,int b,int c,int i)
{
len1++;
road[len1].from=a;
road[len1].to=b;
road[len1].dis=c;
road[len1].i=i;
road[len1].next=head1[a];
head1[a]=len1;
}
void add2(int a,int b,int c,int i)
{
len2++;
ques[len2].from=a;
ques[len2].to=b;
ques[len2].dis=c;
ques[len2].i=i;
ques[len2].next=head2[a];
head2[a]=len2;
}
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
void marge(int x,int y){if(find(x)!=find(y)) f[y]=x;}
void Tarjan(int u,int dev)
{
int e=head1[u],a,b,i,tmp;
while(e!=-)
{
a=road[e].to;
i=road[e].i;
tmp=dev+road[e].dis;
if(!vis[a] && !found[i])
{
found[i]=;
dist[a]=tmp;
Tarjan(a,tmp);
vis[a]=;
marge(u,a);
}
e=road[e].next;
}
e=head2[u];
while(e!=-)
{
a=ques[e].to;
i=ques[e].i;
if(vis[a] && !book[i])
{
book[i]=;
b=find(a);
ans[i]=dist[a]+dist[u]-*dist[b];
}
e=ques[e].next;
}
return ;
}
void init()
{
int i;
len1=,len2=;
for(i=;i<N;i++)
{
road[i].from=road[i].to=road[i].dis=road[i].next=road[i].i=;
f[i]=i;
}
for(i=;i<M;i++)
ques[i].from=ques[i].to=ques[i].dis=ques[i].next=ques[i].i=;
memset(head1,-,sizeof(head1));
memset(head2,-,sizeof(head2));
memset(dist,,sizeof(dist));
memset(vis,,sizeof(vis));
memset(book,,sizeof(book));
memset(found,,sizeof(found));
memset(ans,,sizeof(ans));
return ;
}
int main()
{
// freopen("1.in","r",stdin);
// freopen("test.out","w",stdout);
while(~scanf("%d",&n))
{
if(fun++) printf("\n");
init();
int i,a,b,c,tmp=;
for(i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
add1(a,b,c,i);
add1(b,a,c,i);
tmp=min(min(a,b),tmp);
}
scanf("%d",&q);
for(i=;i<=q;i++)
{
scanf("%d%d%d",&a,&b,&c);
add2(a,b,,i);
add2(b,a,,i);
add2(a,c,,i+q);
add2(c,a,,i+q);
add2(b,c,,i+*q);
add2(c,b,,i+*q);
}
Tarjan(tmp,);
for(i=;i<=q;i++)
printf("%d\n",(ans[i]+ans[i+q]+ans[i+*q])/);
}
return ;
}
ZOJ 3195 Design the city 题解的更多相关文章
- zoj——3195 Design the city
Design the city Time Limit: 1 Second Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...
- ZOJ 3195 Design the city (LCA 模板题)
Cerror is the mayor of city HangZhou. As you may know, the traffic system of this city is so terribl ...
- zoj 3195 Design the city LCA Tarjan
题目链接 : ZOJ Problem Set - 3195 题目大意: 求三点之间的最短距离 思路: 有了两点之间的最短距离求法,不难得出: 对于三个点我们两两之间求最短距离 得到 d1 d2 d3 ...
- ZOJ 3195 Design the city LCA转RMQ
题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...
- ZOJ - 3195 Design the city
题目要对每次询问将一个树形图的三个点连接,输出最短距离. 利用tarjan离线算法,算出每次询问的任意两个点的最短公共祖先,并在dfs过程中求出离根的距离.把每次询问的三个点两两求出最短距离,这样最终 ...
- zoj 3195 Design the city lca倍增
题目链接 给一棵树, m个询问, 每个询问给出3个点, 求这三个点之间的最短距离. 其实就是两两之间的最短距离加起来除2. 倍增的lca模板 #include <iostream> #in ...
- ZOJ Design the city LCA转RMQ
Design the city Time Limit: 1 Second Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...
- ZOJ3195 Design the city [2017年6月计划 树上问题04]
Design the city Time Limit: 1 Second Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...
- xtu summer individual 1 C - Design the city
C - Design the city Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu D ...
随机推荐
- 完全理解Python迭代对象、迭代器、生成器
在了解Python的数据结构时,容器(container).可迭代对象(iterable).迭代器(iterator).生成器(generator).列表/集合/字典推导式(list,set,dict ...
- dll
dll可以有一个入口点函数,系统会在不同的时候调用这个入口函数.这个调用是通知性质的,通常被dll用来执行一些与进程或线程有关的初始化和清理工作如果将dll的入口点函数命名为DllMain之外的其他名 ...
- 经典网络还是VPC,开发者作何选择?
近两天,关于公有云经典网络(基础网络)与私有网络(VPC)的讨论引发技术圈极大关注,事件起因于有开发者将数据库限制在内网访问,但由于安全组设置的原因,阿里云邻居用户被黑后,牵连到了自己的业务.为此,开 ...
- 关于Edittext默认弹出软键盘为数字键
如果说我们只是输入数字的话,我们可以直接在xml文件中: android:inputType="number" 如果是身份证类型的话,我们可以这样: android:inputTy ...
- 1789: [Ahoi2008]Necklace Y型项链
1789: [Ahoi2008]Necklace Y型项链 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 421 Solved: 258[Submit] ...
- ios8指纹识别
简介 苹果从iPhone5S开始,具有指纹识别技术,从iOS8.0之后苹果允许第三方 App 使用 Touch ID进行身份验证.指纹识别Touch ID提供3+2共5次指纹识别机会(3次识别失败后, ...
- 动态规划略有所得 数字三角形(POJ1163)
在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 三角形的行数大于1小于等于100,数 ...
- 使用git克隆指定分支的代码
今天想学习一下开源中国Android客户端的app源码,源码的Git地址:http://git.oschina.net/oschina/android-app,如下图所示: 由于Master主分支上没 ...
- CCF 201609-4 交通规划
问题描述 试题编号: 201609-4 试题名称: 交通规划 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家 ...
- final 、finally 和 finalize()的区别
1. final 是一个关键字.可以修饰数据.方法.类. 1)final 数据:final 用来修饰一个永不改变的编译时常量,或者运行时初始化但是不希望被改变的常量.一个既是 static又是 fin ...