线程同步

上一篇介绍了如何开启线程,线程间相互传递参数,及线程中本地变量和全局共享变量区别。

本篇主要说明线程同步

如果有多个线程同时访问共享数据的时候,就必须要用线程同步,防止共享数据被破坏。如果多个线程不会同时访问共享数据,可以不用线程同步。

线程同步也会有一些问题存在:

  1. 性能损耗。获取,释放锁,线程上下文建切换都是耗性能的。
  2. 同步会使线程排队等待执行。

线程同步的几种方法:

阻塞

当线程调用Sleep,Join,EndInvoke,线程就处于阻塞状态(Sleep使调用线程阻塞,Join、EndInvoke使另外一个线程阻塞),会立即从cpu退出。(阻塞状态的线程不消耗cpu)

当线程在阻塞和非阻塞状态间切换时会消耗几毫秒时间。

//Join
static void Main()
{
Thread t = new Thread (Go);
Console.WriteLine ("Main方法已经运行....");
t.Start();
t.Join();//阻塞Main方法
Console.WriteLine ("Main方法解除阻塞,继续运行...");
} static void Go()
{
Console.WriteLine ("在t线程上运行Go方法...");
} //Sleep
static void Main()
{
Console.WriteLine ("Main方法已经运行....");
Thread.CurrentThread.Sleep(3000);//阻塞当前线程
Console.WriteLine ("Main方法解除阻塞,继续运行...");
} //Task
static void Main()
{
Task Task1=Task.Run(() => {
Console.WriteLine("task方法执行...");
Thread.Sleep(1000);
});
Console.WriteLine(Task1.IsCompleted);
Task1.Wait();//阻塞主线程 ,等该Task1完成
Console.WriteLine(Task1.IsCompleted);
}

加锁(lock)

加锁使多个线程同一时间只有一个线程可以调用该方法,其他线程被阻塞。

同步对象的选择:

  • 使用引用类型,值类型加锁时会装箱,产生一个新的对象。
  • 使用private修饰,使用public时易产生死锁。(使用lock(this),lock(typeof(实例))时,该类也应该是private)
  • string不能作为锁对象。
  • 不能在lock中使用await关键字

锁是否必须是静态类型?

如果被锁定的方法是静态的,那么这个锁必须是静态类型。这样就是在全局锁定了该方法,不管该类有多少个实例,都要排队执行。

如果被锁定的方法不是静态的,那么不能使用静态类型的锁,因为被锁定的方法是属于实例的,只要该实例调用锁定方法不产生损坏就可以,不同实例间是不需要锁的。这个锁只锁该实例的方法,而不是锁所有实例的方法.*

class ThreadSafe
{
 private static object _locker = new object();   void Go()
  {
lock (_locker)
{
      ......//共享数据的操作 (Static Method),使用静态锁确保所有实例排队执行
    }
  } private object _locker2=new object();
void GoTo()
{
lock(_locker2)
//共享数据的操作,非静态方法,是用非静态锁,确保同一个实例的方法调用者排队执行
}
}

同步对象可以兼作它lock的对象

如:

class ThreadSafe
{
 private List <string> _list = new List <string>();
  void Test()
  {
    lock (_list)
    {
      _list.Add ("Item 1");
}
}
}

Monitors

lock其实是Monitors的简洁写法。

lock (x)
{
DoSomething();
}

两者其实是一样的。

System.Object obj = (System.Object)x;
System.Threading.Monitor.Enter(obj);
try
{
DoSomething();
}
finally
{
System.Threading.Monitor.Exit(obj);
}

互斥锁(Mutex)

互斥锁是一个互斥的同步对象,同一时间有且仅有一个线程可以获取它。可以实现进程级别上线程的同步。

class Program
{
//实例化一个互斥锁
public static Mutex mutex = new Mutex(); static void Main(string[] args)
{
for (int i = 0; i < 3; i++)
{
//在不同的线程中调用受互斥锁保护的方法
Thread test = new Thread(MutexMethod);
test.Start();
}
Console.Read();
} public static void MutexMethod()
{
Console.WriteLine("{0} 请求获取互斥锁", Thread.CurrentThread.Name);
mut.WaitOne();
Console.WriteLine("{0} 已获取到互斥锁", Thread.CurrentThread.Name);
Thread.Sleep(1000);
Console.WriteLine("{0} 准备释放互斥锁", Thread.CurrentThread.Name);
// 释放互斥锁
mut.ReleaseMutex();
Console.WriteLine("{0} 已经释放互斥锁", Thread.CurrentThread.Name);
}
}

互斥锁可以在不同的进程间实现线程同步

使用互斥锁实现一个一次只能启动一个应用程序的功能。

    public static class SingleInstance
{
private static Mutex m; public static bool IsSingleInstance()
{
//是否需要创建一个应用
Boolean isCreateNew = false;
try
{
m = new Mutex(initiallyOwned: true, name: "SingleInstanceMutex", createdNew: out isCreateNew);
}
catch (Exception ex)
{ }
return isCreateNew;
}
}

互斥锁的带有三个参数的构造函数

  1. initiallyOwned: 如果initiallyOwned为true,互斥锁的初始状态就是被所实例化的线程所获取,否则实例化的线程处于未获取状态。

  2. name:该互斥锁的名字,在操作系统中只有一个命名为name的互斥锁mutex,如果一个线程得到这个name的互斥锁,其他线程就无法得到这个互斥锁了,必须等待那个线程对这个线程释放。

  3. createNew:如果指定名称的互斥体已经存在就返回false,否则返回true。


信号和句柄

lockmutex可以实现线程同步,确保一次只有一个线程执行。但是线程间的通信就不能实现。如果线程需要相互通信的话就要使用AutoResetEvent,ManualResetEvent,通过信号来相互通信。它们都有两个状态,终止状态和非终止状态。只有处于非终止状态时,线程才可以阻塞。

AutoResetEvent

AutoResetEvent 构造函数可以传入一个bool类型的参数,false表示将AutoResetEvent对象的初始状态设置为非终止。如果为true标识终止状态,那么WaitOne方法就不会再阻塞线程了。但是因为该类会自动的将终止状态修改为非终止,所以,之后再调用WaitOne方法就会被阻塞。

WaitOne 方法如果AutoResetEvent对象状态非终止,则阻塞调用该方法的线程。可以指定时间,若没有获取到信号,返回false

set 方法释放被阻塞的线程。但是一次只可以释放一个被阻塞的线程。

class ThreadSafe
{
static AutoResetEvent autoEvent; static void Main()
{
//使AutoResetEvent处于非终止状态
autoEvent = new AutoResetEvent(false); Console.WriteLine("主线程运行...");
Thread t = new Thread(DoWork);
t.Start(); Console.WriteLine("主线程sleep 1秒...");
Thread.Sleep(1000); Console.WriteLine("主线程释放信号...");
autoEvent.Set();
} static void DoWork()
{
Console.WriteLine(" t线程运行DoWork方法,阻塞自己等待main线程信号...");
autoEvent.WaitOne();
Console.WriteLine(" t线程DoWork方法获取到main线程信号,继续执行...");
} } //输出
//主线程运行...
//主线程sleep 1秒...
// t线程运行DoWork方法,阻塞自己等待main线程信号...
//主线程释放信号...
// t线程DoWork方法获取到main线程信号,继续执行...

ManualResetEvent

ManualResetEventAutoResetEvent用法类似。

AutoResetEvent在调用了Set方法后,会自动的将信号由释放(终止)改为阻塞(非终止),一次只有一个线程会得到释放信号。而ManualResetEvent在调用Set方法后不会自动的将信号由释放(终止)改为阻塞(非终止),而是一直保持释放信号,使得一次有多个被阻塞线程运行,只能手动的调用Reset方法,将信号由释放(终止)改为阻塞(非终止),之后的再调用Wait.One方法的线程才会被再次阻塞。

public class ThreadSafe
{
//创建一个处于非终止状态的ManualResetEvent
private static ManualResetEvent mre = new ManualResetEvent(false); static void Main()
{
for(int i = 0; i <= 2; i++)
{
Thread t = new Thread(ThreadProc);
t.Name = "Thread_" + i;
t.Start();
} Thread.Sleep(500);
Console.WriteLine("\n新线程的方法已经启动,且被阻塞,调用Set释放阻塞线程"); mre.Set(); Thread.Sleep(500);
Console.WriteLine("\n当ManualResetEvent处于终止状态时,调用由Wait.One方法的多线程,不会被阻塞。"); for(int i = 3; i <= 4; i++)
{
Thread t = new Thread(ThreadProc);
t.Name = "Thread_" + i;
t.Start();
} Thread.Sleep(500);
Console.WriteLine("\n调用Reset方法,ManualResetEvent处于非阻塞状态,此时调用Wait.One方法的线程再次被阻塞"); mre.Reset(); Thread t5 = new Thread(ThreadProc);
t5.Name = "Thread_5";
t5.Start(); Thread.Sleep(500);
Console.WriteLine("\n调用Set方法,释放阻塞线程"); mre.Set();
} private static void ThreadProc()
{
string name = Thread.CurrentThread.Name; Console.WriteLine(name + " 运行并调用WaitOne()"); mre.WaitOne(); Console.WriteLine(name + " 结束");
}
} //Thread_2 运行并调用WaitOne()
//Thread_1 运行并调用WaitOne()
//Thread_0 运行并调用WaitOne() //新线程的方法已经启动,且被阻塞,调用Set释放阻塞线程 //Thread_2 结束
//Thread_1 结束
//Thread_0 结束 //当ManualResetEvent处于终止状态时,调用由Wait.One方法的多线程,不会被阻塞。 //Thread_3 运行并调用WaitOne()
//Thread_4 运行并调用WaitOne() //Thread_4 结束
//Thread_3 结束 ///调用Reset方法,ManualResetEvent处于非阻塞状态,此时调用Wait.One方法的线程再次被阻塞 //Thread_5 运行并调用WaitOne()
//调用Set方法,释放阻塞线程
//Thread_5 结束

Interlocked

如果一个变量被多个线程修改,读取。可以用Interlocked

计算机上不能保证对一个数据的增删是原子性的,因为对数据的操作也是分步骤的:

  1. 将实例变量中的值加载到寄存器中。
  2. 增加或减少该值。
  3. 在实例变量中存储该值。

Interlocked为多线程共享的变量提供原子操作。

Interlocked提供了需要原子操作的方法:

  • public static int Add (ref int location1, int value); 两个参数相加,且把结果和赋值该第一个参数。

  • public static int Increment (ref int location); 自增。

  • public static int CompareExchange (ref int location1, int value, int comparand);

    location1 和comparand比较,被value替换.
    
    value 如果第一个参数和第三个参数相等,那么就把value赋值给第一个参数。
    
    comparand 和第一个参数对比。

ReaderWriterLock

如果要确保一个资源或数据在被访问之前是最新的。那么就可以使用ReaderWriterLock.该锁确保在对资源获取赋值或更新时,只有它自己可以访问这些资源,其他线程都不可以访问。即排它锁。但用改锁读取这些数据时,不能实现排它锁。

lock允许同一时间只有一个线程执行。而ReaderWriterLock允许同一时间有多个线程可以执行读操作,或者只有一个有排它锁的线程执行写操作

    class Program
{
// 创建一个对象
public static ReaderWriterLock readerwritelock = new ReaderWriterLock();
static void Main(string[] args)
{
//创建一个线程读取数据
Thread t1 = new Thread(Write);
// t1.Start(1);
Thread t2 = new Thread(Write);
//t2.Start(2);
// 创建10个线程读取数据
for (int i = 3; i < 6; i++)
{
Thread t = new Thread(Read);
// t.Start(i);
} Console.Read(); } // 写入方法
public static void Write(object i)
{
// 获取写入锁,20毫秒超时。
Console.WriteLine("线程:" + i + "准备写...");
readerwritelock.AcquireWriterLock(Timeout.Infinite);
Console.WriteLine("线程:" + i + " 写操作" + DateTime.Now);
// 释放写入锁
Console.WriteLine("线程:" + i + "写结束...");
Thread.Sleep(1000);
readerwritelock.ReleaseWriterLock(); } // 读取方法
public static void Read(object i)
{
Console.WriteLine("线程:" + i + "准备读..."); // 获取读取锁,20毫秒超时
readerwritelock.AcquireReaderLock(Timeout.Infinite);
Console.WriteLine("线程:" + i + " 读操作" + DateTime.Now);
// 释放读取锁
Console.WriteLine("线程:" + i + "读结束...");
Thread.Sleep(1000); readerwritelock.ReleaseReaderLock(); }
}
//分别屏蔽writer和reader方法。可以更清晰的看到 writer被阻塞了。而reader没有被阻塞。 //屏蔽reader方法
//线程:1准备写...
//线程:1 写操作2017/7/5 17:50:01
//线程:1写结束...
//线程:2准备写...
//线程:2 写操作2017/7/5 17:50:02
//线程:2写结束... //屏蔽writer方法
//线程:3准备读...
//线程:5准备读...
//线程:4准备读...
//线程:5 读操作2017/7/5 17:50:54
//线程:5读结束...
//线程:3 读操作2017/7/5 17:50:54
//线程:3读结束...
//线程:4 读操作2017/7/5 17:50:54
//线程:4读结束...

参考:

  • MSDN
  • 《CLR via C#》

c#编程-线程同步的更多相关文章

  1. C#并行编程-线程同步原语

    菜鸟学习并行编程,参考<C#并行编程高级教程.PDF>,如有错误,欢迎指正. 目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 ...

  2. Python并发编程-线程同步(线程安全)

    Python并发编程-线程同步(线程安全) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 线程同步,线程间协调,通过某种技术,让一个线程访问某些数据时,其它线程不能访问这些数据,直 ...

  3. windows核心编程 - 线程同步机制

    线程同步机制 常用的线程同步机制有很多种,主要分为用户模式和内核对象两类:其中 用户模式包括:原子操作.关键代码段 内核对象包括:时间内核对象(Event).等待定时器内核对象(WaitableTim ...

  4. linux系统编程--线程同步

    同步概念 所谓同步,即同时起步,协调一致.不同的对象,对“同步”的理解方式略有不同. 如,设备同步,是指在两个设备之间规定一个共同的时间参考: 数据库同步,是指让两个或多个数据库内容保持一致,或者按需 ...

  5. Linux系统编程 —线程同步概念

    同步概念 同步,指对在一个系统中所发生的事件之间进行协调,在时间上出现一致性与统一化的现象. 但是,对于不同行业,对于同步的理解略有不同.比如:设备同步,是指在两个设备之间规定一个共同的时间参考:数据 ...

  6. Delphi多线程编程--线程同步的方法(事件、互斥、信号、计时器)简介

    更详细的可以参考:http://www.cnblogs.com/xumenger/p/4450659.html 或者参考之后的博客 四个系统内核对象(事件.互斥.信号.计时器)都是线程同步的手段,从这 ...

  7. Linux程序设计学习笔记----多线程编程线程同步机制之相互排斥量(锁)与读写锁

    相互排斥锁通信机制 基本原理 相互排斥锁以排他方式防止共享数据被并发訪问,相互排斥锁是一个二元变量,状态为开(0)和关(1),将某个共享资源与某个相互排斥锁逻辑上绑定之后,对该资源的訪问操作例如以下: ...

  8. UNIX环境高级编程——线程同步之互斥锁、读写锁和条件变量(小结)

    一.使用互斥锁 1.初始化互斥量 pthread_mutex_t mutex =PTHREAD_MUTEX_INITIALIZER;//静态初始化互斥量 int pthread_mutex_init( ...

  9. UNIX环境高级编程——线程同步之条件变量以及属性

    条件变量变量也是出自POSIX线程标准,另一种线程同步机制.主要用来等待某个条件的发生.可以用来同步同一进程中的各个线程.当然如果一个条件变量存放在多个进程共享的某个内存区中,那么还可以通过条件变量来 ...

随机推荐

  1. DOM详解

    浏览器工作的基本流程 1.浏览器开始解析html文档,构建DOM树(DOM tree),DOM树的节点由文档的标签.属性.文本等组成:2.解析外部CSS文件及style标签中的样式信息,这些样式信息将 ...

  2. 傻瓜式安装nginx以及负载均衡配置

    概述 需求 做了一个对内的http api应用.由于只有一台服务器,考虑到升级问题(即升级时会造成几秒钟用户访问不了),决定搭一个nginx,公共端口:9999,部署2套应用,端口:9981,9982 ...

  3. Notification的基本用法以及使用RemoteView实现自定义布局

    Notification的作用 Notification是一种全局效果的通知,在系统的通知栏中显示.既然作为通知,其基本作用有: 显示接收到短消息.即时信息等 显示客户端的推送(广告.优惠.新闻等) ...

  4. 小K的H5之旅-CSS基础(一)

    一.什么是CSS W3C标准中,倡导有3:其一为内容与表现分离,其二为内容与行为分离,其三为内容结构的语义化.其倡导中第一条的"表现"指的便可以说是CSS.CSS全称Cascadi ...

  5. poj3648

    poj3648 题意 有一对新人结婚,n-1对夫妇去参加婚礼.有一个很长的座子,新娘与新郎坐在座子的两边(相反).接下来n-1对夫妇就坐,其中任何一对夫妇都不能坐在同一边,且(有一些人有奸情)这些有奸 ...

  6. html加javascript和canvas类似超级玛丽游戏

    html加javascript和canvas制作 代码来源于网上 复制可用 <!doctype html><html lang="en"> <head ...

  7. gradle 使用总结

    什么是gradle 书面化解释: Gradle可以自动化地进行软件构建.测试.发布.部署.软件打包,同时也可以完成项目相关功能如:生成静态网站.生成文档等. Gradle是一种依赖管理工具. 它和ma ...

  8. sed的用法

    1.什么是sed sed命令是一个流线式.非交互式编辑器,可以实现在vi等编辑器中一样的编辑效果.   2.sed的工作原理 模式空间(pattern space) sed一次处理一行文本(或输入), ...

  9. Caused by: java.lang.RuntimeException: by java.lang.OutOfMemoryError: PermGen space(tomcat 启动时提示内存溢出)

    设置MaxPermSize大小TOMCAT_HOME/bin/catalina.bat 文件头加set JAVA_OPTS='-Xms512m -Xmx1024m -XX:MaxPermSize=51 ...

  10. 源码安装LNMP环境

    新装CentOS 6.7,安装默认服务版本basic server 安装顺序linux(忽略...)--> Nginx--> Mariadb--> PHP 为了不影响测试效果,首先关 ...