Andrew Ng机器学习课程笔记--week5(下)
Neural Networks: Learning
内容较多,故分成上下两篇文章。
一、内容概要
Cost Function and Backpropagation
- Cost Function
- Backpropagation Algorithm
- Backpropagation Intuition
Backpropagation in Practice
- Implementation Note:Unroll Parameters
- Gradient Checking
- Random Initialization
- Putting it Together
Application of Neural Networks
- Autonomous Driving
二、重点&难点
1. Backpropagation in Practice
1) Implementation Note:Unroll Parameters
本节主要讲的是利用octave实现神经网络算法的一个小技巧:将多个参数矩阵展开为一个向量。具体可以参考课程视频,此处略。
2) Gradient Checking
神经网络算法是一个很复杂的算法,所以我们很难凭直觉观察出结果是否正确,因此有必要在实现的时候做一些检查,本节给出一个检验梯度的数值化方法。
首先我们可以将损失函数的梯度近似为
\(\frac{∂J(θ)}{∂θ}≈\frac{J(θ+ε)-J(θ-ε)}{2ε}\)
推广到一般形式是:
\(\frac{∂J(θ)}{∂θ_j}≈\frac{J(θ_1,θ_2,θ_j+ε……,θ_n)-J(θ_1,θ_2,θ_j-ε……,θ_n)}{2ε}\)
一般来说ε≈\(10^{-4}\)时就比较接近了
最后我们的主要目标是检查这个梯度的近似向量与反向传播算法得到的梯度向量是否近似相等。
实现时的注意点:
- 首先实现反向传播算法来计算梯度向量DVec;
- 其次实现梯度的近似gradApprox;
- 确保以上两步计算的值是近似相等的;
- 在实际的神经网络学习时使用反向传播算法,并且关掉梯度检查。
特别重要的是:
- 一定要确保在训练分类器时关闭梯度检查的代码。如果你在梯度下降的每轮迭代中都运行数值化的梯度计算,你的程序将会非常慢。
3) Random Initialization
关于如何学习一个神经网络的细节到目前为止基本说完了,不过还有一点需要注意,就是如何初始化参数向量or矩阵。通常情况下,我们会将参数全部初始化为0,这对于很多问题是足够的,但是对于神经网络算法,会存在一些问题,以下将会详细的介绍。
对于梯度下降和其他优化算法,对于参数向量的初始化是必不可少的。能不能将初始化的参数全部设置为0?
在神经网络中,如果将参数全部初始化为0 会导致一个问题,例如对于上面的神经网络的例子,如果将参数全部初始化为0,在每轮参数更新的时候,与输入单元相关的两个隐藏单元的结果将是相同的,既:
\(a_1^{(2)} = a_2^{(2)}\)
这个问题又称之为对称的权重问题,因此我们需要打破这种对称,这里提供一种随机初始化参数向量的方法: 初始化\(θ_{ij}^{(l)}\)为一个落在 [-ε,ε]区间内的随机数, 可以很小,但是与上面梯度检验( Gradient Checking)中的ε没有任何关系。
4)Putting it together(组合到一起-如何训练一个神经网络)
这个老师说会在后面更加具体的介绍。
关于神经网络的训练,我们已经谈到了很多,现在是时候将它们组合到一起了。那么,如何训练一个神经网络?
首先需要确定一个神经网络的结构-神经元的连接模式, 包括:
- 输入单元的个数:特征 的维数;
- 输出单元的格式:类的个数
- 隐藏层的设计:比较合适的是1个隐藏层,如果隐藏层数大于1,确保每个隐藏层的单元个数相同,通常情况下隐藏层单元的个数越多越好。
在确定好神经网络的结构后,我们按如下的步骤训练神经网络:
- 随机初始化权重参数;
- 实现:对于每一个 通过前向传播得到;
- 实现:计算代价函数;
- 实现:反向传播算法用于计算偏导数
- 使用梯度检查来比较反向传播算法计算的和数值估计的的梯度,如果没有问题,在实际训练时关闭这部分代码;
- 在反向传播的基础上使用梯度下降或其他优化算法来最小化;
Application of Neural Networks
主要介绍了老师的一个大佬朋友利用神经网络设计的自动驾驶汽车的视频,感兴趣的可以看看。自动驾驶汽车
Andrew Ng机器学习课程笔记--week5(下)的更多相关文章
- Andrew Ng机器学习课程笔记--week5(上)
Neural Networks: Learning 内容较多,故分成上下两篇文章. 一.内容概要 Cost Function and Backpropagation Cost Function Bac ...
- Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)
本周内容较多,故分为上下两篇文章. 本文为下篇. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
随机推荐
- ServerSocket与Socket类
ServerSocket与Socket类 TCP套接字协议: TCP最主要的特征就是能够建立长时间的连接,而且能够保证数据安全的送达,但是速度比较慢.使用TCP进行连接的时候会有三次握手,之后才建立起 ...
- hbase集群导入csv文件
小数据文件导入: 样例 hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -Dimporttsv.separator="," ...
- POI读取excel工具类 返回实体bean集合(xls,xlsx通用)
本文举个简单的实例 读取上图的 excel文件到 List<User>集合 首先 导入POi 相关 jar包 在pom.xml 加入 <!-- poi --> <depe ...
- 深入理解 JavaScript(三)
强大的原型和原型链 前言 JavaScript 不包含传统的类继承模型,而是使用 prototypal 原型模型. 虽然这经常被当作是 JavaScript 的缺点被提及,其实基于原型的继承模型比传统 ...
- vue2 和 webpack 配置环境使用
http://blog.csdn.net/fungleo/article/details/53171052
- 微服务(二)hystrix
特性 1.延迟和失败容忍 防止级联错误,错误回退,优雅降级.快速失败和恢复 线程和信号量隔离 2.实时监控和配置更改 3.并发 并行执行,请求缓存,自动批处理失败请求 总运行流程 当你发出请求后,hy ...
- 再起航,我的学习笔记之JavaScript设计模式03
我的学习笔记是根据我的学习情况来定期更新的,预计2-3天更新一章,主要是给大家分享一下,我所学到的知识,如果有什么错误请在评论中指点出来,我一定虚心接受,那么废话不多说开始我们今天的学习分享吧! 上一 ...
- year:2017 month:08 day:03
2017-08-03 JAVAse 继承 继承:通过extends关键字可实现类与类之间的继承 父类:基类/超类 子类:派生类 1.继承的特点:单继承[一个类只能有一个父类]多层次[父类还可有父类] ...
- 分布式web架构中对session同步的常用处理方法以及优缺点
写在前面 最近在读一本来自淘宝技术团队大牛的书,名字叫<大型网站系统与Java中间件实践>.开篇的章节详细地介绍了一个网站架构由小变大不断演进的过程,其中从单机架构升级到集群架构的过程中着 ...
- 29. leetcode 167. Two Sum II - Input array is sorted
167. Two Sum II - Input array is sorted Given an array of integers that is already sorted in ascendi ...