数据结构

假设有M个元素的列表,需要从中分解出N个对象,N<M,这会导致分解的值过多的异常。如下:

record=['zhf','zhf@163.com','775-555-1212','847-555-1212']
name,email,=record

E:\python2.7.11\python.exe E:/py_prj/python_cookbook.py

Traceback (most recent call last):

File "E:/py_prj/python_cookbook.py", line 9, in <module>

name,email,=record

ValueError: too many values to unpack

提示too many values to unpack

在python3中可以用*表达式来解决

record=['zhf','zhf@163.com','775-555-1212','847-555-1212']
name,email,*phone_number=record
此时name=’zhf’,email=’zhf@163.com’
Phone_number=['775-555-1212','847-555-1212']
但是此类用法仅限于3.0. 2.7.6版本会报错
 
(二)
保存最后N个元素:
有的时候我们希望保存查找到元素的最后前5个元素,比如文件有如下内容:
This is a c test
This is a java test
This is a go test
This is a c++ test
This is a mysql test
This is a javascript test
This is a perl test
This is a ruby test
This is a python test
This is a essamble test
This is a linux test
我们想找到This is a python test的前5个记录。我们可以用collections.deque来实现。 Deque(maxlen=N)创建了一个固定长度的队列,当有新记录加入队列而队列已满时会自动移除最老的记录。实现FIFO的功能。实现代码如下:
def search(lines,pattern,history=5):
#创建一个长度为5的队列
    previous_line=deque(maxlen=history)
    for line in lines:
        if pattern in line:
            yield line,previous_line
#将查找到pattern之前的信息插入队列
        previous_line.append(line) if __name__=='__main__':
    f=open(r'E:\py_prj\test.txt')
    for line,previous in search(f,'python',5):
        for plines in previous:
#打印出最后5条信息
            print plines
#打印出查找到的pattern
        print line
结果如下:previous保存了This is a python test的前5条信息
E:\python2.7.11\python.exe E:/py_prj/python_cookbook.py
This is a c++ test
 
This is a mysql test
 
This is a javascript test
 
This is a perl test
 
This is a ruby test
 
This is a python test

下面的例子更直观的表现了deque的功能,当达到最大数量的时候,删除最早的元素,然后在末端插入新的元素

>>> from collections import deque

>>> q=deque(maxlen=3)

>>> q.append(1)

>>> q.append(2)

>>> q.append(3)

>>> q

deque([1, 2, 3], maxlen=3)

>>> q.append(4)

>>> q

deque([2, 3, 4], maxlen=3)

>>> q.append(5)

>>> q

deque([3, 4, 5], maxlen=3)

如果不指定大小,那么则是无限大的队列,可以appendleft在左端插入元素,也可以用popleft来将最左边的出队列

>>> q=deque()

>>> q.append(1)

>>> q.append(2)

>>> q.append(3)

>>> q.appendleft(4)

>>> q

deque([4, 1, 2, 3])

>>> q.popleft()

4

三 找到最大的N个元素:

Heapq模块有2个函数,nlargest()和nsmallest()可以解决这个问题

import heapq
nums=[1,8,2,10,4,5,6,19,20]
largest=heapq.nlargest(3,nums)
print largest

得到结果:

[20, 19, 10]

[1, 2, 4]

我们还可以导入更复杂的数据结构进行比较:如下面的结构。里面包含了6个元素,都是字典类型的。如何根据price对他们进行排序呢

portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]

我们来看下heapq.nlargest的帮助手册。原型函数中第一个参数是返回的数目,第二个参数表明是可迭代对象。第三个参数key值默认为None

Help on function nlargest in module heapq:

nlargest(n, iterable, key=None)

Find the n largest elements in a dataset.

Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]

这个key值和sorted的key值是一个作用,这个key值指定可迭代对象中的一个元素来进行排序。也就是从第二个参数中接受一个参数进行处理,最后得到一个元素。函数会根据这个元素来进行排序。那么前面的例子中,每个迭代对象返回一个字典。那么key值的作用就是从这个字典中取出一个关键参数作为排序的参考。

代码改造如下:使用lambda来实现这个函数功能。这个s值就是portfolio中返回的每个字典值。取出其中price字段进行排序

largest=heapq.nlargest(3,portfolio,key=lambda s:s['price'])
samllest=heapq.nsmallest(3,portfolio,key=lambda s:s['price'])

结果如下:

[{'price': 543.22, 'name': 'AAPL', 'shares': 50}, {'price': 115.65, 'name': 'ACME', 'shares': 75}, {'price': 91.1, 'name': 'IBM', 'shares': 100}]

[{'price': 16.35, 'name': 'YHOO', 'shares': 45}, {'price': 21.09, 'name': 'FB', 'shares': 200}, {'price': 31.75, 'name': 'HPQ', 'shares': 35}]

通过heapq的名字可以看出,这是将一个数据对象用堆排序并取得最大最小的值。具体是如何来实现的呢。我们首先来看下heapq.heapify这个函数

nums=[1,8,2,10,4,5,6,19,20]
heapq.heapify(nums)
print nums

结果如下:

[1, 4, 2, 10, 8, 5, 6, 19, 20]

其实heapfify就是生成一个最小堆的树型结构。具体最小堆的定义可以参考数据结构。最小堆就是子节点大于父节点。结构如下所示:

1,8,2,10,4,5,6,19,20的树形结构如下

1

8                  2

10   4  5  6

19   20

排序后的数据结构,可以看到变动仅在于8和4,也就是将4上浮,8下沉。得到如下的结构。可以看到最顶端的父节点始终是最小的元素。

1

4                         2

10     8  5    6

19     20

因此根据这个结构我们就可以用heapq.heappop(nums)得到最小的元素。其实每次heappop执行的过程都是一次堆重新排序的过程,自动将最小的元素排在父节点。整个执行过程如下:
>>> nums=[1,8,2,10,4,5,6,19,20]
#首先必须要用heapify将数据转换成堆的形式
>>> heapq.heapify(nums)
>>> nums
[1, 4, 2, 10, 8, 5, 6, 19, 20]
                        1
                4               2
          10         8     5         6
    19          20
>>> heapq.heappop(nums)
1
>>> nums
[2, 4, 5, 10, 8, 20, 6, 19]
                         2
                  4              5
           10            8   20       6
      19
>>> heapq.heappop(nums)
2
>>> nums
[4, 8, 5, 10, 19, 20, 6]
                           4
                   8               5
            10            19   20       6
>>> heapq.heappop(nums)
4
>>> nums
[5, 8, 6, 10, 19, 20]
                           5
                   8                6
            10            19    20
>>> heapq.heappop(nums)
5
>>> nums
[6, 8, 20, 10, 19]
                          6
                  8               20
          10              19
>>> heapq.heappop(nums)
6
>>> nums
[8, 10, 20, 19]
                          8
                   10            20
            19
>>> heapq.heappop(nums)
8
>>> nums
[10, 19, 20]
                            10
                     19               20
 
>>> heapq.heappop(nums)
10
>>> nums
[19, 20]
                            19
                      20
>>> heapq.heappop(nums)
19
>>> nums
[20]
从上面的过程可以看到,其实每次heappop都是一次树型结构的调整,自动会将最小的元素上浮到父节点,
上浮和下沉的具体实现函数如下,有兴趣的可以研究下。
def _siftup(heap, pos):
    endpos = len(heap)
    startpos = pos
    newitem = heap[pos]
    # Bubble up the smaller child until hitting a leaf.
   
childpos = 2*pos + 1    # leftmost child position
   
while childpos < endpos:
        # Set childpos to index of smaller child.
       
rightpos = childpos + 1
        if rightpos < endpos and not cmp_lt(heap[childpos], heap[rightpos]):
            childpos = rightpos
        # Move the smaller child up.
       
heap[pos] = heap[childpos]
        pos = childpos
        childpos = 2*pos + 1
    # The leaf at pos is empty now.  Put newitem there, and bubble it up
    # to its final resting place (by sifting its parents down).
   
heap[pos] = newitem
    _siftdown(heap, startpos, pos)

python cookbook第三版学习笔记 一的更多相关文章

  1. python cookbook第三版学习笔记十:类和对象(一)

    类和对象: 我们经常会对打印一个对象来得到对象的某些信息. class pair:     def __init__(self,x,y):         self.x=x         self. ...

  2. python cookbook第三版学习笔记六:迭代器与生成器

    假如我们有一个列表 items=[1,2,3].我们要遍历这个列表我们会用下面的方式 For i in items:   Print i 首先介绍几个概念:容器,可迭代对象,迭代器 容器是一种存储数据 ...

  3. python cookbook第三版学习笔记十三:类和对象(三)描述器

    __get__以及__set__:假设T是一个类,t是他的实例,d是它的一个描述器属性.读取属性的时候T.d返回的是d.__get__(None,T),t.d返回的是d.__get__(t,T).说法 ...

  4. python cookbook第三版学习笔记二十:可自定义属性的装饰器

    在开始本节之前,首先介绍下偏函数partial.首先借助help来看下partial的定义 首先来说下第一行解释的意思: partial 一共有三个部分: (1)第一部分也就是第一个参数,是一个函数, ...

  5. python cookbook第三版学习笔记十六:抽象基类

    假设一个工程中有多个类,每个类都通过__init__来初始化参数.但是可能有很多高度重复且样式相同的__init__.为了减少代码.我们可以将初始化数据结构的步骤归纳到一个单独的__init__函数中 ...

  6. python cookbook第三版学习笔记十五:property和描述

    8.5 私有属性: 在python中,如果想将私有数据封装到类的实例上,有两种方法:1 单下划线.2 双下划线 1 单下划线一般认为是内部实现,但是如果想从外部访问的话也是可以的 2 双下划线是则无法 ...

  7. python cookbook第三版学习笔记七:python解析csv,json,xml文件

    CSV文件读取: Csv文件格式如下:分别有2行三列. 访问代码如下: f=open(r'E:\py_prj\test.csv','rb') f_csv=csv.reader(f) for f in ...

  8. python cookbook第三版学习笔记十三:类和对象(四)描述器

    __get__以及__set__:假设T是一个类,t是他的实例,d是它的一个描述器属性.读取属性的时候T.d返回的是d.__get__(None,T),t.d返回的是d.__get__(t,T).说法 ...

  9. python cookbook第三版学习笔记十一:类和对象(二)调用父类的方法

    在子类中调用父类的方法,可以下面的A.spam(self)的方法. class A(object):     def spam(self):         print 'A.spam' class ...

随机推荐

  1. 微坑---微信小程序ios上时间字符串转换为时间戳时,在开发工具上和安卓手机上运行成功

    给定一个时间字符串  var time="2017-02-27 16:42:53" js有三种转换为时间戳的方法:1.var timestamp = Date.parse(time ...

  2. JSP动态员工登陆案例

    package web; import java.io.IOException; import java.io.PrintWriter; import java.util.List; import j ...

  3. hdu3746 kmp求循环节

    CC always becomes very depressed at the end of this month, he has checked his credit card yesterday, ...

  4. [.NET] 《Effective C#》快速笔记 - C# 中的动态编程

    <Effective C#>快速笔记 - C# 中的动态编程 静态类型和动态类型各有所长,静态类型能够让编译器帮你找出更多的错误,因为编译器能够在编译时进行大部分的检查工作.C# 是一种静 ...

  5. 大数据和BI商业智能有何区别?有何相关?

    大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级. 1.大数据和BI两者的区别 BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案,用来将企业中现有 ...

  6. 移动Web开发小结

    以下是做移动端Web开发过程中小结的几个事项:希望能够帮助到大家,同时也方便自己查看: 1,在移动开发页面中,主体盒子的max-width与min-width的设置原因: ①设置max-width是为 ...

  7. 转:修改Tomcat控制台标题

    转自:http://blog.csdn.net/chanryma/article/details/46930729 背景:用控制台方式启动Tomcat,控制台的标题默认是"Tomcat&qu ...

  8. su 切换用户的提示"This account is currently not available"

    su 切换ivalue用户时,提示"This account is currently not available"; 首先进入/etc/passwd文件中是否添加ivalue用户 ...

  9. 【JAVAWEB学习笔记】13_servlet

    JavaWeb核心之Servlet 教学目标 案例一.完成用户登录功能 案例二.记录成功登录系统的人次 一.Servlet简介 1.什么是Servlet Servlet 运行在服务端的Java小程序, ...

  10. JVM类加载续

    上一篇理解了JVM类加载过程的第一个阶段,这篇来说说剩下的阶段:验证.准备.解析.初始化.需要注意的是,这些阶段(解析除外)只是按照这个顺序开始,但是执行的过程中可能存在交叉. 验证:就是要对加载的二 ...