TensorFlow正则化经常被用于Deep-Learn中,泛化数据模型,解决过拟合问题。再深度学习网络只有在有足够大的数据集时才能产生惊人的学习效果。当数据量不够时,过拟合的问题就会经常发生。然而,只选取我们需要的数据量的模型,就会非常难以继续进行泛化和优化。所以正则化技术孕育而生~~~~~~~

正则化的基本思想是向损失函数添加一个惩罚项用于惩罚大的权重,隐式的减少自由参数的数量。可以达到弹性地适应不同数据量训练的要求而不产生过拟合的问题。~~~~~~


 #正则化
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np data = []
label = []
np.random.seed(0)
for i in range(150):
x1 = np.random.uniform(-1,1)
x2 = np.random.uniform(0,2)
if x1**2+x2**2 <= 1:
data.append([np.random.normal(x1,0.1),np.random.normal(x2,0.1)])
label.append(0)
else:
data.append([np.random.normal(x1,0.1),np.random.normal(x2,0.1)])
label.append(1) data = np.hstack(data).reshape(-1,2)
label = np.hstack(label).reshape(-1,1)
plt.scatter(data[:,0],data[:,1],c=label,
cmap="RdBu",vmin=-.2,vmax=1.2,edgecolor="white")
plt.show()

2.查看不同迭代中的变量取值的变化

 v1 = tf.Variable(0,dtype=tf.float32)
step = tf.Variable(0,trainable=False)
ema = tf.train.ExponentialMovingAverage(0.99,step)
maintain_averages_op = ema.apply([v1])
with tf.Session() as sess:
#初始化
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run([v1,ema.average(v1)]))
#更新变量v1的取值
sess.run(tf.assign(v1,5))
sess.run(maintain_averages_op)
print(sess.run([v1,ema.average(v1)]))
#更新step和v1的取值
sess.run(tf.assign(step,10000))
sess.run(tf.assign(v1,10))
sess.run(maintain_averages_op)
print(sess.run([v1,ema.average(v1)]))
#更新一次v1的滑动平均值
sess.run(maintain_averages_op)
print(sess.run([v1,ema.average(v1)])) #结果 [0.0, 0.0]
[5.0, 4.5]
[10.0, 4.5549998]
[10.0, 4.6094499]

note:优化器optimizer

tf的7种优化器
最常用的: GradientDescentOptimizer

tf.train.Optimizer
tf.train.GradientDescentOptimizer
tf.train.AdadeltaOptimizer
tf.train.AdagradOptimizer
tf.train.AdagradDAOptimizer
tf.train.MomentumOptimizer
tf.train.AdamOptimizer
tf.train.FtrlOptimizer
tf.train.ProximalGradientDescentOptimizer
tf.train.ProximalAdagradOptimizer
tf.train.RMSPropOptimizer

TensorFlow(三)---------正则化的更多相关文章

  1. TensorFlow L2正则化

    TensorFlow L2正则化 L2正则化在机器学习和深度学习非常常用,在TensorFlow中使用L2正则化非常方便,仅需将下面的运算结果加到损失函数后面即可 reg = tf.contrib.l ...

  2. 『TensorFlow』正则化添加方法整理

    一.基础正则化函数 tf.contrib.layers.l1_regularizer(scale, scope=None) 返回一个用来执行L1正则化的函数,函数的签名是func(weights).  ...

  3. Hello TensorFlow 三 (Golang)

    在一台ubuntu 16.04.2虚拟机上为golang安装TensorFlow. 官方参考:https://www.tensorflow.org/install/install_go 首先安装go ...

  4. tensorFlow 三种启动图的用法

    tf.Session(),tf.InteractivesSession(),tf.train.Supervisor().managed_session()  用法的区别: tf.Session() 构 ...

  5. 机器学习:DeepDreaming with TensorFlow (三)

    我们看到,利用TensorFlow 和训练好的Googlenet 可以生成多尺度的pattern,那些pattern看起来比起单一通道的pattern你要更好,但是有一个问题就是多尺度的pattern ...

  6. TensorFlow(三):非线性回归

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 非线性回归 # 使用numpy生成200个随机 ...

  7. tensorflow(三)

    1.placeholder 一个数据占位符,用于在构建一个算法时留出一个位置,然后在run时填入数据. x = tf.placeholder(tf.float32) y = tf.placeholde ...

  8. tensorflow 三种模型:ckpt、pb、pb-savemodel

    1.CKPT 目录结构 checkpoint: model.ckpt-1000.index model.ckpt-1000.data-00000-of-00001 model.ckpt-1000.me ...

  9. 吴恩达机器学习笔记(三) —— Regularization正则化

    主要内容: 一.欠拟合和过拟合(over-fitting) 二.解决过拟合的两种方法 三.正则化线性回归 四.正则化logistic回归 五.正则化的原理 一.欠拟合和过拟合(over-fitting ...

随机推荐

  1. SQLserver学习(四)——T-SQL编程之事务、索引和视图

    今天来分享下T-SQL高级编程中的事务.索引.视图,可以和之前的SQL server系列文章结合起来. 一.事务 事务(TRANSACTION)是作为单个逻辑工作单元执行的一系列操作,这些操作作为一个 ...

  2. 华为olt ma5680t常用命令详解

    进入待替换的故障ONU所注册的单板 interface epon 0/1         //此处可以通过查看PON口下设备状态来获取需要替换的ONU ID.假设故障设备位于2端口,ID为6 ont ...

  3. C# 文件下载

    在a标签href属性直接写文件地址有些文件不会进入下载(例如 图片类型),浏览器会自动打开预览这时可以使用下面这种方式进行文件下载 Html代码 <a href="/DownloadF ...

  4. slf4j+log4j在Java中实现日志记录

    小Alan今天来跟大家聊聊开发中既简单又常用但必不可少的一样东西,那是什么呢?那就是日志记录,日志输出,日志保存. 后面就统一用日志记录四个字来形容啦. 日志记录是项目的开发中必不可少的一个环节,特别 ...

  5. Jquery实现按钮点击遮罩加载,处理完后恢复

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="EasyUiLoad.aspx. ...

  6. asp.net调用Lodop实现页面打印或局部打印,可进行打印设置或预览

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="WebPrint.aspx.cs ...

  7. 【学习】jquery.placeholder.js让IE浏览器支持html5的placeholder

    type为text或password的input,其在实际应用时,往往有一个占位符,类似这样的: 在没有html5前,一般写成value,用js实现交互,文本框获得焦点时,提示文字消失,失去焦点时,文 ...

  8. (MariaDB)MySQL内置函数大全

    html { font-family: sans-serif } body { margin: 0 } article,aside,details,figcaption,figure,footer,h ...

  9. JDBC的基本用法

    一.编程步骤 1.加载驱动 Class forName("com.mysql.jdbc.Driver"):mysql驱动 Class forName("oralce.jd ...

  10. RSA加密算法验证(C#实现)

    RSA算法简单原理介绍(节选于网络) 假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息.她可以用以下的方式来产生一个公钥和一个私钥: 随意选择两个大的质数p和q,p不等于q,计算N=pq ...