bzoj 4816
这题是莫比乌斯反演的典型题也是很有趣的题。
题意:求,其中f为为斐波那契数列
那么首先观察一下指数,发现是我们熟悉的形式,可以转化成这样的形式:
令T=kd,且假设n<m,有:
令
则原式=
这样的话我们的步骤就是这样的:
线性筛出莫比乌斯函数,同时递推求出f
然后利用f和莫比乌斯函数求出g(枚举倍数,这样把时间复杂度控制在调和级数级别),注意到有时会出现分数(莫比乌斯函数值为-1时),所以对上面的每个f需要求出对应地逆元(费马小定理)
然后对g求出前缀积,这样就可以利用数论分块在根号级的时间内求出答案了,但由于是乘积式,所以在提取一段乘积的时候会出现除法,所以还要对求出的前缀积求出逆元。
注意上面的都是要预处理出的内容
然后就水到渠成了
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
#define mode 1000000007
using namespace std;
ll g[1000005];
ll f[1000005];
ll inv[1000005];
int mu[1000005];
int pri[1000005];
ll mul[1000005];
ll minv[1000005];
int cnt=0;
bool used[1000005];
int T,n,m;
ll pow_mul(ll x,ll y)
{
ll ans=1;
while(y)
{
if(y&1)
{
ans*=x;
ans%=mode;
}
x*=x;
x%=mode;
y/=2;
}
return ans;
}
void init()
{
mu[1]=1;
f[1]=1;
g[1]=1;
inv[1]=1;
for(int i=2;i<=1000000;i++)
{
f[i]=f[i-1]+f[i-2];
f[i]%=mode;
g[i]=1;
inv[i]=pow_mul(f[i],mode-2);
if(!used[i])
{
pri[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&i*pri[j]<=1000000;j++)
{
used[i*pri[j]]=1;
if(i%pri[j]==0)
{
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=1000000;i++)
{
for(int j=1;i*j<=1000000;j++)
{
if(!mu[j])
{
continue;
}else if(mu[j]==1)
{
g[i*j]*=f[i];
g[i*j]%=mode;
}else
{
g[i*j]*=inv[i];
g[i*j]%=mode;
}
}
}
mul[0]=1;
minv[0]=1;
for(int i=1;i<=1000000;i++)
{
mul[i]=mul[i-1]*g[i]%mode;
minv[i]=pow_mul(mul[i],mode-2);
}
}
ll solve(int x,int y)
{
if(x>y)
{
swap(x,y);
}
ll ans=1;
int last=0;
for(int i=1;i<=x;i=last+1)
{
last=min(x/(x/i),y/(y/i));
ans*=pow_mul(mul[last]*minv[i-1]%mode,(ll)(x/i)*(ll)(y/i)%(mode-1));
ans%=mode;
}
return ans;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",solve(n,m));
}
return 0;
}
bzoj 4816的更多相关文章
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
- bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格
洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...
- bzoj 4816 [Sdoi2017]数字表格——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 \( ans=\prod\limits_{d=1}^{n}f[d]^{\sum\lim ...
- bzoj 4816 数字表格 —— 反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 推导过程同:http://www.cnblogs.com/zhouzhendong/p ...
- BZOJ 4816 数字表格
首先是惯例的吐槽.SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇.学长说考SDOI可以考出联赛分数,%%%. 下面放解题报告.并不喜 ...
- BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...
- 【刷题】BZOJ 4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演
大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...
随机推荐
- AngularJS--及其他js框架对比
----和 **类似?? Angular 2.谷歌的 React Facebook的 Vue.js. Ember.js. https://github.com/angular/angular.js ...
- 第六天-request response\13-request乱码.avi;
疑问:提交为POST时 ,request为什么不放在Post里面处理呢? 服务器已经启动后,修改html的代码不需要重启服务器就可以生效 :超链接中有中文,也是需要像get那样 通过该配置文件可以解决 ...
- linux(ubuntu) python 版本切换
参考链接:https://blog.csdn.net/thankyou0/article/details/79610854
- Django中session的基础了解
基于cookie做用户验证时:敏感信息不适合放在cookie中 session依赖cookie session原理 cookie是保存在用户浏览器端的键值对 session是保存在服务器端的键值对 s ...
- 为Oracle GoldenGate准备数据库
了解如何为Oracle GoldenGate准备数据库,包括如何配置连接和日志记录,如何在数据库中启用Oracle GoldenGate,如何设置闪回查询以及如何管理服务器资源. 为集成进程配置连接 ...
- Python3-进程池与线程池
进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这会对服 ...
- RefineDet网络简介(转载)
转载链接:https://blog.csdn.net/u014380165/article/details/79502308 思想:框架建立在FPN上,只不过在提取特征层(down-top)的时候就加 ...
- tomcat目录映射
环境:CentOS 6 + tomcat 7 + jdk 7 目前使用2种方法: 1.tomcat/conf/server.xml <Host name="localhost" ...
- Mongoose简介
Mongoose 官网地址:http://mongoosejs.com/ ,Mongoose 为node.js提供了优雅的,针对mongodb的ODM(Object Document Mappin ...
- 题解-hdu2866 Special Prime
Problem hdu-2866 题意:求区间\([2,L]\)有多少素数\(p\)满足\(n^3+pn^2=m^3\),其中\(n,m\)属于任意整数 Solution 原式等价于\(n^2(p+n ...