import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #Lasso回归
def test_Lasso(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.Lasso()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_Lasso
test_Lasso(X_train,X_test,y_train,y_test) def test_Lasso_alpha(*data):
X_train,X_test,y_train,y_test=data
alphas=[0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000]
scores=[]
for i,alpha in enumerate(alphas):
regr = linear_model.Lasso(alpha=alpha)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,scores)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("Lasso")
plt.show() # 调用 test_Lasso_alpha
test_Lasso_alpha(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——Lasso回归的更多相关文章

  1. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  3. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  4. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  5. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  6. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

随机推荐

  1. Proxifier代理工具简介和下载

    Proxifier 是一款功能非常强大的socks5客户端,可以让不支持通过代理服务器工作的网络程序能通过HTTPS或SOCKS代理或代理链.支持64位系统,支持Xp,Vista,Win7,支持soc ...

  2. python安装media报错

    Try https://pypi.python.org/pypi/setuptools easy_install LEE 我后来,依次在Python2.7中装了 numpy-1.7.0-win32-s ...

  3. Vbox隐藏虚拟机,实现后台运行

    Vbox隐藏虚拟机,实现后台运行   1.进入vBox安装位置的命令行 D:\Program Files\VirtualBox> 2.执行命令: .\VBoxManage startvm Xp_ ...

  4. webpack打包vue -->简易讲解

    ### 1. 测试环境: 推荐这篇文章:讲的很细致 https://www.cnblogs.com/lhweb15/p/5660609.html 1. webpack.config.js自行安装 { ...

  5. Docker基础操作

    安装 ubuntu16.04安装docker sudo apt-get update sudo apt-get install docker sudo apt-get install docker.i ...

  6. [转]SQL中的case when then else end用法

      Case具有两种格式.简单Case函数和Case搜索函数. --简单Case函数 CASE sex WHEN '1' THEN '男' WHEN '2' THEN '女' ELSE '其他' EN ...

  7. 20164310Exp6 信息搜索和漏洞扫描

    实践内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点(以自己主机为目标) (4)漏洞扫描:会扫,会看报告, ...

  8. oracle dg 报错提示 涉及硬盘错误

    ###oracle dg 报错提示 涉及硬盘错误 Dec 23 03:28:01 xhisdg rsyslogd: [origin software="rsyslogd" swVe ...

  9. ADT工具使用详解

    备注:一下内容为本人手工翻译官方文档注解,如有翻译不到位的地方,欢迎批评指正; ADT(Android开发工具)是Eclipse的插件,它提供了一套与Eclipse IDE集成的工具.它可以让您访问许 ...

  10. 嵌入式 printf函数

    来自:https://www.cnblogs.com/02xiaoma/archive/2012/06/22/2558618.html #include <stdio.h> #includ ...