Hdoj 1007 Quoit Design 题解
Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.
Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
Sample Output
0.71
0.00
0.75
Author
CHEN, Yue
Source
思路
最小点对算法:
- 只有2个点:就返回这2个点的距离
- 只有3个点:就返回两两组成中最短的距离
- 大于3个点:采用分治,步骤如下:
- 根据横坐标x对所有的店进行升序排列
- 找出中心线L,将点集划分为左右2部分\(SL,SR\)
- 递归分治解决找出\(d = min(dL,dR)\),表示\(SL,SR\)中的最近点对
- 将处于\([L-d,L+d]\)中的点按照y值升序排列,不断更新最近点对的距离(如果最近点对的情况是一个在\(SL\),一个在\(SR\)里面,肯定不会超过这个边界)
代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
double x;
double y;
}a[100010],b[100010];
bool cmpx(node a, node b)
{
return a.x < b.x;
}
bool cmpy(node a, node b)
{
return a.y < b.y;
}
double dis(node a, node b)
{
return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
}
double binaryCal(int l, int r, node* a)
{
if(r-l == 1) //只有2个点的情况
{
return dis(a[l], a[r]);
}
if(r-l == 2) //有3个点的情况
{
double tmp1 = dis(a[l],a[l+1]);
double tmp2 = dis(a[l+1],a[r]);
double tmp3 = dis(a[l],a[r]);
return min(tmp1, min(tmp2,tmp3));
}
int mid = (l+r)/2;
double min_d = min(binaryCal(l,mid,a), binaryCal(mid+1,r,a));
double sqrt_min_d = sqrt(min_d);
int pos = 0;
for(int i=l;i<=r;i++)
{
if(a[i].x < a[mid].x + sqrt_min_d && a[i].x > a[mid].x - sqrt_min_d)
b[++pos] = a[i];
}//将位于[L-d,L+d]范围的点保存到b数组里面
sort(b+1,b+1+pos,cmpy); //按照y值进行排序
for(int i=1;i<=pos;i++)
for(int j=i+1;j<=pos;j++)
{
if(b[j].y - b[i].y > sqrt_min_d)
break;
min_d = min(min_d,dis(b[i],b[j]));
}
return min_d;
}
int main()
{
int N;
while(scanf("%d",&N)!=EOF)
{
if(N==0) break;
for(int i=1;i<=N;i++)
scanf("%lf%lf",&a[i].x, &a[i].y);
double ans = 0.0;
sort(a+1,a+1+N,cmpx);
ans = binaryCal(1,N,a);
printf("%.2lf\n",sqrt(ans)/2); //最后再处理开平方问题
}
return 0;
}
Hdoj 1007 Quoit Design 题解的更多相关文章
- 最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design
题意:有n个点,问其中某一对点的距离最小是多少 分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最 ...
- hdu 1007 Quoit Design 题解
原题地址 题目大意 查询平面内最近点对的距离,输出距离的一半. 暴力做法 枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时. 那么我们考虑去优化这一个过程,我们在求 ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- 杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...
- poj 1007 Quoit Design(分治)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
随机推荐
- elasticsearch elk最全java api 搜索 聚合、嵌套查询
目录 一. 一般查询... 2 (一) matchAllQuery(client). 2 (二) matchQuery(client);3 (三) multiMatchQuery(client);3 ...
- 福州大学软件工程1816 | W班 第3次作业成绩排名
写在前面 汇总成绩排名链接 1.作业链接 第三次作业--原型设计(结对第一次) 2.评分准则 本次作业总分 25分,由以下部分组成: (1)在随笔开头请加上该博客链接,以方便阅读时查看作业需求,并备注 ...
- 异常:fatal: unable to access 'https://git.oschina.net/pcmpcs/library.git/': Could not resolve host
git fork项目时出现的异常. 原因: 我以前用的是ssh地址做的远程通信地址,而这次是用的是https,因为很久没用,所以忘记了以前是用ssh的了.解决方案一:复制ssh协议的地址,然后再关联 ...
- CMMI摘要
CMMI_百度百科https://baike.baidu.com/item/CMMI CMMI分为哪几个等级?CMMI等级介绍_百度经验https://jingyan.baidu.com/articl ...
- bootstrap 弹窗或者提示框插件 bootstrap-growl 和bootstrap-notify
Bootstrap简单好用的页面右上角咆哮提示框 - daidaineteasy的专栏 - CSDN博客https://blog.csdn.net/daidaineteasy/article/deta ...
- linux 安装ssh以及ssh用法与免密登录
想要免费登录就是把本地机器的id_rsa_pub的内容放到远程服务器的authorized_keys里面 一.配置yum和hosts文件 配置hosts文件: 命令:vi /etc/hosts 在文件 ...
- 11 The superlative
1 最高级用来表明三个或更多事物之间的关系.最高级是通过在形容词之前加 "the" 并在之后加 "-est",或在形容词之前加 "the most&q ...
- 缓存session,cookie,sessionStorage,localStorage的区别
https://www.cnblogs.com/cencenyue/p/7604651.html(copy) 浅谈session,cookie,sessionStorage,localStorage的 ...
- sqlyog Can't connect to MySQL server on localhost (0)
https://blog.csdn.net/l1336037686/article/details/78940223
- 在linux上安装MySQL数据库,并简单设置用户密码,登录MySQL
在新装的Centos系统上安装MySQL数据库. <p><a href="http://www.cnblogs.com/tijun/">提君博客原创< ...