传送门

【传送门】

题目大意

求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n}\)有多少组不同的解。

分析

将式子转化成\((n-x)(n-y)=n^2\)的形式。
那么很明显,因为我们要求正整数的解,那么就是要求\(a\times b=n^2\)的解的个数。
又变成了约数个数的问题。

代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define db double
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1; char ch = 0;
    for (; ch < '0' || ch > '9'; ch = getchar())
        if (ch == '-') fl = -1;
    for (; ch >= '0' && ch <= '9'; ch = getchar())
        x = (x << 1) + (x << 3) + (ch ^ 48);
    x *= fl;
}
ll n, ans;
int main() {
    read(n); ans = 1;
    for (ll i = 2; i * i <= n; i ++) {
        if (n % i == 0) {
            ll tot = 0;
            for (; n % i == 0; n /= i) ++ tot;
            ans *= (tot * 2 + 1);
        }
    }
    if (n > 1) ans *= 3;
    printf("%lld\n", (ans + 1) / 2);
    return 0;
}

[luogu5253]丢番图【数学】的更多相关文章

  1. bzoj 4459: [Jsoi2013]丢番图 -- 数学

    4459: [Jsoi2013]丢番图 Time Limit: 10 Sec  Memory Limit: 64 MB Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系 ...

  2. BZOJ 4459: [Jsoi2013]丢番图 数学推导

    之前绝对做过几乎一模一样的题,现在做竟然忘了. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) f ...

  3. BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数

    BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数 Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一. 为了纪念他,这些方程一般被称 ...

  4. Project Euler 110:Diophantine reciprocals II 丢番图倒数II

    Diophantine reciprocals II In the following equation x, y, and n are positive integers. For n = 4 th ...

  5. Project Euler 108:Diophantine reciprocals I 丢番图倒数I

    Diophantine reciprocals I In the following equation x, y, and n are positive integers. For n = 4 the ...

  6. 【bzoj4459】[Jsoi2013]丢番图 分解质因数

    题目描述 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一.为了纪念他,这些方程一般被称作丢番图方程.最著名的丢番图方程之一是x^N+y^n=z^N.费马提出,对于N&g ...

  7. bzoj4459[Jsoi2013]丢番图

    bzoj4459[Jsoi2013]丢番图 题意: 丢番图方程:1/x+1/y=1/n(x,y,n∈N+) ,给定n,求出关于n的丢番图方程有多少组解.n≤10^14. 题解: 通分得yn+xn=xy ...

  8. 【bzoj4459】JSOI2013丢番图

    某JSOI夏令营出题人啊,naive! 你还是得学习个,搬这种原题不得被我一眼看穿? 求个n^2的约数除以二,向上取整. #include<bits/stdc++.h> using nam ...

  9. Codeforces Round #368 (Div. 2)A B C 水 图 数学

    A. Brain's Photos time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 容器化-Docker介绍

    导读:本文章对Docker技术进行了介绍,阐述了Docker的技术发展历程.容器与虚拟机的差异.Docker原理.特点.Docker三组件和Docker带来的影响,为我们进一步理解Docker打下基础 ...

  2. redis中的hash、列表、集合操作

    一.hash操作 数据结构:key:{k1:v1, k2:v2, k3:v3} 类似Python中的字典 如:info : {name: lina, age: 22, sex: F} hset key ...

  3. springBoot项目启动类启动无法访问

    springBoot项目启动类启动无法访问. 网上也查了一些资料,我这里总结.下不来虚的,也不废话. 解决办法: 1.若是maven项目,则找到右边Maven Projects --->Plug ...

  4. 福州大学软件工程1816 | W班 第10次作业[软件工程实践总结]

    作业链接 个人作业--软件工程实践总结 评分细则 本次由五个问题(每个十分)+创意照片(五分)+附加题(十分)组成 评分统计图 千帆竞发图 汇总成绩排名链接 汇总链接

  5. 分布式ID生成系统 UUID与雪花(snowflake)算法

    Leaf——美团点评分布式ID生成系统 -https://tech.meituan.com/MT_Leaf.html 网游服务器中的GUID(唯一标识码)实现-基于snowflake算法-云栖社区-阿 ...

  6. java kill thread command line

    multithreading - How do you kill a Thread in Java? - Stack Overflowhttps://stackoverflow.com/questio ...

  7. Linux 下面RPM 安装的SQLSERVER 修改字符集的方法

    1. 自己还是太low 2. 遇到问题 先 -h 处理 3. 发现登录报错, 怀疑是字符集的问题: 4. 计划是修改字符集 到 自己的环境可用的状态 使用命令 /opt/mssql/bin/mssql ...

  8. websocket协议握手详解

    最近使用tornado做长链接想着怎么着也要试试websocket协议吧.所以说干就干. 首先要知道websocket是基于http协议的,为什么这么说?因为从协议来说,websocket是借用了一部 ...

  9. Jmeter安装与使用(压测)

    一.介绍 Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态和动态资源的性能,例如:静态文件,Java Se ...

  10. 如何在DataTemplate中绑定RadioButton的Checked事件

    在我们的项目中经常要用到数据模板,最近做的一个项目中在数据模板中要放一些RadioButton,其中每一个RadioButton设置了Checked事件,如果直接在View层写Checked事件的话不 ...