[HNOI2008]玩具装箱TOY(斜率优化)
题目链接
题意:有编号为\(1\cdots N\)的N件玩具,第 i 件玩具经过压缩后变成一维长度为 \(C_i\) 。要求在一个容器中的玩具编号是连续的,同时如果将第 i 件玩具到第 j 个玩具放到一个容器中,那么容器的长度将为 \(x=j-i+\sum\limits_{k=i}^{j}C_k\)。如果容器长度为 x ,其制作费用为 \((X-L)^2\) .其中 L 是一个常量。容器数目长度不限。求最小费用。
\(1 \le N \le 50000,1 \le L,Ci \le 10^7\)
这道题是斜率优化的经典题了qvq
当然dp顺序肯定是从前到后了
分析一下答案式
用f(j)来更新f(i)
\]
设\(a[i] = sum[i] + i, b[i] = sum[i] + i + 1 + L\)
\]
这里面 随j改变的量是\(b[j], b[j]^2\)和\(f[j]\)
所以移项得 \(2⋅a[i]⋅b[j]+f[i]−a[i]^2=f[j]+b[j]^2\)
将b[j]看作x,\(f[j]+b[j]^2\)看作y,这个式子就可以看作一条斜率为\(2a[i]\)的直线
f[i]即当上述直线过点\(P(b[j],f[j]+b[j]^2)\)时,直线在y轴的截距加\(a[i]^2\)
而题目即为找这个截距的最小值
由于sum[i]随i递增 所以a[i],b[i]都递增
所以点\(1 \cdots i-1\)是从左到右排列的
用单调栈维护一下凸包
像做线性规划一样做一个切线就行了
也就是二分斜率\((P_j,P_{j+1}) < 2a[i]\)
update:貌似不用二分
因为a[i]递增要查询的斜率也递增
那单调队列维护就行了qvq
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e5 + 5;
const int K = 2e5;
int n, L;
double sum[N], f[N];
int que[N], head, tail;
inline double a(int x){return sum[x]+x;}
inline double b(int x){return sum[x]+x+1+L;}
inline double X(int x){return b(x);}
inline double Y(int x){return f[x]+b(x)*b(x);}//注意这里不可以用define qvq
//a[i] = sum[i] + i, b[i] = sum[i] + i + 1 + L
//P(b[j],f[j]+b[j]^2)
inline double slope(int x, int y){
return (Y(y) - Y(x)) / (X(y) - X(x));
}
int main() {
scanf("%d%d", &n, &L);
for(int i = 1; i <= n; ++i){
scanf("%lf", &sum[i]);
sum[i] += sum[i - 1];
}
head = tail = 1;
for(int i = 1; i <= n; ++i){
while(head < tail && slope(que[head], que[head + 1]) < 2 * a(i)) ++head;
f[i] = f[que[head]] + (a(i) - b(que[head])) * (a(i) - b(que[head]));
//printf("b %lld\n", (long long)(a(i) - b(que[head])));
while(head < tail && slope(que[tail - 1], que[tail]) > slope(que[tail - 1], i)) --tail;
que[++tail] = i;
}
printf("%lld", (long long)f[n]);
return 0;
}
[HNOI2008]玩具装箱TOY(斜率优化)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- OSS网页上传和断点续传(终结篇)
有了之前OSS网页上传和断点续传(OSS配置篇)和(STSToken篇),其万事俱备只欠东风啦,此终结篇即将展示OSS上传文件及断点续传的无限魅力... 网络卡顿.延迟能续传吗?能! 关了浏览器,还能 ...
- numpy中random的使用
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...
- linux 下mysql服务的管理
一.mysql服务的管理 1.1 mysql启动与关闭 linux下启动mysql: /etc/init.d/mysqld start 关闭进程: ps -ef | grep mysql 找到进程号 ...
- centos7下安装python3.6
一.wget 官网下载到本地 进入家目录: cd ~ wget https://www.python.org/ftp/python/3.6.3/Python-3.6.3.tgz下载到本地 解压移动到/ ...
- Python_动态参数、名称空间、作用域、作用域链、加载顺序、函数的嵌套、global、nonlocal
1.动态参数 当实参数量与形参数量相等时,参数传递正常. def func1(a, b, c): pass func1(1, 2, 3) 当实参数量与形参数量不相等时,则会报错. def func1( ...
- 学习PHPExcel
关于PHPExcel使用方法,可以参考慕课网的教程,链接在此 PHPExcel的github地址:https://github.com/PHPOffice/PHPExcel 下载之后,将文件夹中的Cl ...
- CentOS的el5, el6, el7代表什么
https://www.cnblogs.com/EasonJim/p/9051851.html el: enterprise linux?
- 理解ORM的前提:数据库中的范式和约束
理解ORM的前提:数据库中的范式和约束 一.数据库中的范式: 范式, 英文名称是 Normal Form,它是英国人 E.F.Codd(关系数据库的老祖宗)在上个世纪70年代提出关系数据库模型后总结出 ...
- 6 Prefer and Would rather
1 prefer 使用 "prefer" 用来表明通常喜欢某件事甚于另一件事.说话者喜欢打高尔夫球更甚于喜欢打网球."prefer" 的后面可以接名词(&quo ...
- C# Note17: 使用Ionic.Zip.dll实现解压缩文件
首先下载ionic.Zip.dll,然后在项目中添加该引用,之后就可以在cs中使用了: using Ionic.Zip; #region Ionic.Zip压缩文件 private readonly ...