【CF1139D】Steps to One(动态规划)

题面

CF

你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望。

题解

设\(f[i]\)表示\(gcd\)为\(i\)时的答案的期望。

考虑转移就是每次选一个数和\(i\)求个\(gcd\),那么计算一下变成每个可能的值的方案数直接暴力转移就行了。

复杂度似乎是两个\(log\)???

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 100100
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,f[MAX],inv[MAX],mu[MAX];
vector<int> y[MAX];
int main()
{
scanf("%d",&n);f[1]=0;mu[1]=1;inv[0]=inv[1]=1;
for(int i=2;i<=n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;++i)for(int j=i;j<=n;j+=i)y[j].push_back(i);
for(int i=1;i<=n;++i)for(int j=i+i;j<=n;j+=i)mu[j]-=mu[i];
for(int i=1;i<=n;++i)
{
int p=n/i;
if(i!=1)f[i]=1ll*(f[i]+p)*inv[n-p]%MOD;;
add(f[0],f[i]+1);
for(int j=i+i;j<=n;j+=i)
{
int d=j/i,s=0;
for(int v:y[d])s+=mu[v]*(p/v);
add(f[j],1ll*s*(f[i]+1)%MOD);
}
}
f[0]=1ll*f[0]*inv[n]%MOD;
printf("%d\n",f[0]);
return 0;
}

【CF1139D】Steps to One(动态规划)的更多相关文章

  1. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

  2. CF1139D Steps to One

    题目链接:洛谷 这个公式可真是个好东西.(哪位大佬知道它叫什么名字的?) 如果$X$恒$\geq 0$,那么 $$E[X]=\int_0^{+\infty}P(X>t)dt$$ 呸,我什么都没写 ...

  3. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  4. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  5. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  6. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  7. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  8. java 动态规划解决上楼梯问题

    问题描述: 你正在爬楼梯. 它需要n步才能达到顶峰. 每次你可以爬1或2步. 您可以通过多少不同的方式登顶? 注意:给定n将是一个正整数. Example 1: Input: 2 Output: 2 ...

  9. 动态规划-Minimum Insertion Steps to Make a String Palindrome

    2020-01-05 11:52:40 问题描述: 问题求解: 好像多次碰到类似的lcs的变种题了,都是套上了回文的壳.这里再次记录一下. 其实本质就是裸的lcs,就出结果了. public int ...

随机推荐

  1. spring security运行流程图(转)

    原文:http://blog.csdn.net/u011511684/article/details/31394493 示例下载地址:http://download.csdn.net/detail/u ...

  2. WinRAR从入门到高级的操作技巧集合

    一.基础技巧 1.批量建立文件夹 如果在工作中,经常要建立很多相同文件夹结构(如在备份数据时).那可以把这个繁琐的工作让WinRAR完成:先在“资源管理器”中把多个文件夹结构建好(包括其下的子文件夹) ...

  3. 线程中的current thread not owner异常错误

    多线程常用的一些方法: wait(),wait(long),notify(),notifyAll()等 这些方法是当前类的实例方法, wait()      是使持有对象锁的线程释放锁;wait(lo ...

  4. Linux reboot与init 6区别

    Reboot与init 6的区别 - flyingcloud_2008的专栏 - CSDN博客https://blog.csdn.net/flyingcloud_2008/article/detail ...

  5. JEECG DataGridColumn dictionary使用问题

    <t:dgCol title="线索所属人"  field="ownerId"  query="true"  queryMode=&q ...

  6. Android下的软件合集

    在平常使用Android手机的时候,选择一个好的软件可以做到事半功倍的效果,所以在此总结一下,加速我们的工作与生活效率 1) ConnectBot ConnectBot是一个Android操作系统上的 ...

  7. 网络编程--使用UDP发送接收数据

    package com.zhangxueliang.udp; import java.io.IOException; import java.net.DatagramPacket; import ja ...

  8. 在linux上安装MySQL数据库,并简单设置用户密码,登录MySQL

    在新装的Centos系统上安装MySQL数据库. <p><a href="http://www.cnblogs.com/tijun/">提君博客原创< ...

  9. k8s使用glusterfs做存储

    一.安装glusterfs https://www.cnblogs.com/zhangb8042/p/7801181.html 环境介绍; centos 7 [root@k8s-m ~]# cat / ...

  10. vue-resource: jsonp请求百度搜索的接口

    1. yarn add vue-resource 2. main.js引入vue-resource import Vue from 'vue' import MintUI from 'mint-ui' ...