【CF1139D】Steps to One(动态规划)

题面

CF

你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望。

题解

设\(f[i]\)表示\(gcd\)为\(i\)时的答案的期望。

考虑转移就是每次选一个数和\(i\)求个\(gcd\),那么计算一下变成每个可能的值的方案数直接暴力转移就行了。

复杂度似乎是两个\(log\)???

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 100100
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,f[MAX],inv[MAX],mu[MAX];
vector<int> y[MAX];
int main()
{
scanf("%d",&n);f[1]=0;mu[1]=1;inv[0]=inv[1]=1;
for(int i=2;i<=n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;++i)for(int j=i;j<=n;j+=i)y[j].push_back(i);
for(int i=1;i<=n;++i)for(int j=i+i;j<=n;j+=i)mu[j]-=mu[i];
for(int i=1;i<=n;++i)
{
int p=n/i;
if(i!=1)f[i]=1ll*(f[i]+p)*inv[n-p]%MOD;;
add(f[0],f[i]+1);
for(int j=i+i;j<=n;j+=i)
{
int d=j/i,s=0;
for(int v:y[d])s+=mu[v]*(p/v);
add(f[j],1ll*s*(f[i]+1)%MOD);
}
}
f[0]=1ll*f[0]*inv[n]%MOD;
printf("%d\n",f[0]);
return 0;
}

【CF1139D】Steps to One(动态规划)的更多相关文章

  1. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

  2. CF1139D Steps to One

    题目链接:洛谷 这个公式可真是个好东西.(哪位大佬知道它叫什么名字的?) 如果$X$恒$\geq 0$,那么 $$E[X]=\int_0^{+\infty}P(X>t)dt$$ 呸,我什么都没写 ...

  3. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  4. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  5. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  6. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  7. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  8. java 动态规划解决上楼梯问题

    问题描述: 你正在爬楼梯. 它需要n步才能达到顶峰. 每次你可以爬1或2步. 您可以通过多少不同的方式登顶? 注意:给定n将是一个正整数. Example 1: Input: 2 Output: 2 ...

  9. 动态规划-Minimum Insertion Steps to Make a String Palindrome

    2020-01-05 11:52:40 问题描述: 问题求解: 好像多次碰到类似的lcs的变种题了,都是套上了回文的壳.这里再次记录一下. 其实本质就是裸的lcs,就出结果了. public int ...

随机推荐

  1. iOS- 利用AFNetworking(AFN) - 实现文件断点下载

    https://www.cnblogs.com/qingche/p/3500746.html 1. 定义一个全局的AFHttpClient:包含有 1> baseURL 2> 请求 3&g ...

  2. p9半幺群

    如何不理解划红线的地方?第二个划红线地方,请举一个例子 1.0不是幺元 2.f(1)=2, f(2)=1, f(3)=3, g(1)=2, g(2)=3, g(3)=1  fg不等于gf

  3. rest-framework序列化

    快速实例 Quickstart 序列化 开篇介绍: ---- 一切皆是资源,操作只是请求方式 ----book表增删改查 /books/ books /books/add/ addbook /book ...

  4. PAT 7-12 拯救007

    在老电影“007之生死关头”(Live and Let Die)中有一个情节,007被毒贩抓到一个鳄鱼池中心的小岛上,他用了一种极为大胆的方法逃脱 —— 直接踩着池子里一系列鳄鱼的大脑袋跳上岸去!(据 ...

  5. Bridge (br0) Network on Linux

    动手实践虚拟网络 - 每天5分钟玩转 OpenStack(10) - CloudMan - 博客园https://www.cnblogs.com/CloudMan6/p/5296573.html li ...

  6. C99标准的柔性数组 (Flexible Array)

    [什么是柔性数组(Fliexible Array)] 柔性数组在C99中的定义是: 6.7.2.1 Structure and union specifiers As a special case, ...

  7. Oracle 备份表数据

    --备份表数据 select * from t_owners; --创建备份表 create table t_owners_copy ( id number, name ), addressid nu ...

  8. Day 4-1 模块的导入方法和路径

    什么是模块? 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码 ...

  9. 本地数据访问时出现跨域问题Cross origin requests are only supported for protocol schemes: ……

    从桌面找到Chrome图标,右键属性,快捷方式,起始位置(安装路径) 注:在cmd中访问Program Files文件的方法 %ProgramFiles%=C:\Program Files %Prog ...

  10. Junit概述

    Junit ->  java unit.也就是说Junit是xunit家族中的一员. unit   <- unit test case,即单元测试用例. Junit  = java uni ...