【agc013d】Piling Up(动态规划)

题面

atcoder

洛谷

有\(n\)个球,颜色为黑白中的一种,初始时颜色任意。

进行\(m\)次操作,每次操作都是先拿出一个求,再放进黑白各一个,再拿出一个球。

求最终拿出球的序列的方案数。

题解

首先可以把操作看成每次拿出一个球把它染上任意一种颜色。

设\(f[i][j]\)表示进行完前\(i\)次操作,还剩下\(j\)个黑球的方案数。

拿出球的序列如果只从黑球的角度来看的话,可以看成一个\(+1,-1\)组成的折线。

如果折线能够到达的最小值不为\(0\),那么我们可以通过平移把它移到\(0\)这个位置,并且平移过程中所有的操作序列所得到的结果串都是一样的。

那么我们强制只在\(0\)位置计算答案,给状态额外加上一维,表示\(j\)是否到达过\(0\)。

这样子答案就是\(\sum f[m][j][1]\)了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define MAX 3030
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,ans,f[MAX][MAX][2];
int main()
{
scanf("%d%d",&n,&m);f[0][0][1]=1;
for(int i=1;i<=n;++i)f[0][i][0]=1;
for(int i=1;i<=m;++i)
for(int j=0;j<=n;++j)
for(int k=0;k<=1;++k)
{
if(j)add(f[i][j][k|(j==1)],f[i-1][j][k]),add(f[i][j-1][k|(j==1)],f[i-1][j][k]);
if(n-j)add(f[i][j+1][k],f[i-1][j][k]),add(f[i][j][k],f[i-1][j][k]);
}
for(int i=0;i<=n;++i)add(ans,f[m][i][1]);
printf("%d\n",ans);return 0;
}

【agc013d】Piling Up(动态规划)的更多相关文章

  1. 【agc013d】AtCoder Grand Contest 013 D - Piling Up

    题意 盒子里有n块砖,每块的颜色可能为蓝色或红色. 执行m次三步操作: 1.从盒子里随便拿走一块砖 2.放入一块蓝砖和红砖到盒子里 3.从盒子里随便拿走一块砖 给定n,m 问拿出来的砖,可能有多少种不 ...

  2. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  3. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  6. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  7. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  8. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. NET 使用 RabbitMQ

    NET 使用 RabbitMQ 前言 最近项目要使用RabbitMQ,园里里面已经有很多优秀的文章,Rabbitmq官网也有.net实例.这里我尝试下图文并茂之形式记录下使用的过程. 安装 Rabbi ...

  2. beego 各种形式的路由实例

    基本路由 基本路由就是和http.Handle和http.HandleFunc一样都是绑定固定的路径,比如绑定了4个路由映射: 定义的4个控制器中,匹配哪一个路由,就输出对应的控制名. beego.R ...

  3. CMD管道命令使用

    Windows netstat 查看端口.进程占用 开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID 之后在任务管理器中找到这个PID所对应的程序如果任务 ...

  4. Hbase数据结构模型

  5. 在linux命令下访问url

    1.elinks - lynx-like替代角色模式WWW的浏览器 例如: elinks --dump http://www.baidu.com 2.wget 这个会将访问的首页下载到本地 [root ...

  6. CentOS7 网络NAT模式

    问题:安装完毕ping命令不能用,然后改为桥接模式,ping可以用. 先了解桥接,NAT 的含义. 桥接:在bridged模式下,VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机,它可以访 ...

  7. saltstack一

    Saltstack概述 Salt一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, 使其可以 ...

  8. Python:matplotlib绘制直方图

    使用hist方法来绘制直方图:     绘制直方图,最主要的是一个数据集data和需要划分的区间数量bins,另外你也可以设置一些颜色.类型参数: plt.hist(np.random.randn(1 ...

  9. js的常用文档对象,document

    1.document的概念:window的子对象,由于DOM对象模型的默认对象就是window,因此Window对象中的方法和子对象不需要通过Window来引用. - 2.document的组成:属性 ...

  10. linux环境 :LIBRARY_PATH, LD_LIBRARY_PATH区别

    参考: https://www.cnblogs.com/mylinux/p/4955448.html LIBRARY_PATH和LD_LIBRARY_PATH是Linux下的两个环境变量,二者的含义和 ...