题目描述

  给你一个\(n\times m\)的棋盘,每次随机在棋盘上放一个国际象棋中的车,不能和以前放的重叠。每个车可以控制当前行和当前列。当所有行和所有列都被控制时结束游戏。问你结束时期望放了多少个车。

  注意:结束的条件是所有行和所有列都被控制,而不是所有格子都被控制。

  \(n,m\leq 50\)

题解

  简单DP

  \(f_{i,j,k}\)表示放了\(k\)个车后控制了\(i\)行\(j\)列的概率

\[f_{i,j,k}=\frac{f_{i,j,k-1}\times(ij-(k-1))+f_{i,j-1,k-1}\times i(m-j+1)+f_{i-1,j,k-1}\times j(n-i+1)+f_{i-1,j-1,k-1}\times(n-i+1)(m-j+1)}{nm-k+1}
\]

  答案是

\[\sum_{i=1}^{nm}i(f_{n,m,i}-f_{n,m,i-1})
\]

  弄个滚动数组搞一下

  时间复杂度:\(O(n^4)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double f[2][60][60];
void solve()
{
double ans=0;
int n,m;
scanf("%d%d",&n,&m);
memset(f,0,sizeof f);
int i,j,k;
f[0][0][0]=1;
int t=0;
for(k=1;k<=n*m;k++)
{
t^=1;
double now=1./(n*m-k+1);
memset(f[t],0,sizeof f[t]);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
f[t][i][j]=(f[t^1][i][j]*(i*j-k+1)+f[t^1][i-1][j]*(n-i+1)*j+f[t^1][i][j-1]*i*(m-j+1)+f[t^1][i-1][j-1]*(n-i+1)*(m-j+1))*now;
ans+=k*(f[t][n][m]-f[t^1][n][m]);
}
printf("%.10lf\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}

【XSY1594】棋盘控制 概率DP的更多相关文章

  1. Domination(概率DP)

    Domination 题目链接:https://odzkskevi.qnssl.com/9713ae1d3ff2cc043442f25e9a86814c?v=1531624384 Edward is ...

  2. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  3. POJ-3744 Scout YYF I 概率DP

    题目链接:http://poj.org/problem?id=3744 简单的概率DP,分段处理,遇到mine特殊处理.f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine ...

  4. POJ2151Check the difficulty of problems 概率DP

    概率DP,还是有点恶心的哈,这道题目真是绕,问你T个队伍.m个题目.每一个队伍做出哪道题的概率都给了.冠军队伍至少也解除n道题目,全部队伍都要出题,问你概率为多少? 一開始感觉是个二维的,然后推啊推啊 ...

  5. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  6. 概率DP(放棋子)Domination

    题意:https://zoj.pintia.cn/problem-sets/91827364500/problems/91827369874 给你n*m的棋盘,我们定义放满棋盘是:任意一行一列至少有一 ...

  7. ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...

  8. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  9. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

随机推荐

  1. vue及Eelement使用过程中遇到的一些问题

    在做项目的过程中,目前主要遇到了以下几个问题: 一.样式问题 1.样式中使用scoped的问题: 主要表现在从一个页面跳到另一个页面时,第二个页面的样式不能正确显示,通过刷新才能恢复页面的预定样式. ...

  2. python-Requests + 正则表达式爬取猫眼电影

    github: https://github.com/LXL-YAN/Requests_Regular-Expressions-Crawl-CatEye-Movies

  3. Python Revisited Day 02 (数据类型)

    目录 Python 关键字 整数 整数转换函数 整数位逻辑操作符 浮点类型 math模块函数与常量 复数 精确的十进制数字 decimal 字符串 str.format() 格式规约 Python 关 ...

  4. 一个6亿的表a,一个3亿的表b,通过外间tid关联,你如何最快的查询出满足条件的第50000到第50200中的这200条数据记录

    1.如果A表TID是自增长,并且是连续的,B表的ID为索引 select * from a,b where a.tid = b.id and a.tid>500000 limit 200; 2. ...

  5. openstack-KVM-Memory

    一.Memory 1.查看memory信息 free -g cat /proc/meminfo dmesg | grep Memory 2.xml文件中的内存信息: vim /etc/libvirt/ ...

  6. stark组件之delete按钮、filter过滤

    1.构建批量删除按钮 2.filter过滤 3.总结+coding代码 1.构建批量删除按钮 1.admin中每个页面默认都有 2.stark之构建批量删除 3.coding {% extends ' ...

  7. checkbox操作判断 Jquery选择器

    function checkAll(d){ console.log(d); console.log(d.checked); //注意 这里是d不是$(d) 不是jQuery对象 if(d.checke ...

  8. Spark开发第一个程序

    simon@simon-Lenovo-G400:~/.ssh$ touch authorized_keyssimon@simon-Lenovo-G400:~/.ssh$ cat id_rsa.pub ...

  9. video maker & video tutorials

    video maker & video tutorials 视频课程制作工具 https://ke.qq.com/agency/personal/intro.html 成为网络老师 https ...

  10. 好用的UI框架收集

    1. we-ui 专门为微信内网页和微信小程序设计的UI框架