[机器学习]梯度提升决策树--GBDT
概述
GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力较强的算法。
GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类。
集成学习==>提升方法族==>梯度提升方法==>以决策树作为基学习器的梯度提升方法
集成学习
集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务。如何产生“好而不同”的个体学习器,是集成学习研究的核心。
根据个体学习器的生成方式,可以将集成学习方法大致分为两大类:
- 1、个体学习器间存在强依赖关系、必须串行生成的序列化方法。
比如boosting族算法,代表性的有adaboost算法,GBDT。 - 2、个体学习器之间不存在强依赖关系、可同时生成的并行化方法。
比如bagging和“随机森林”。
对于adaboost,bagging和随机森林可以参考集成学习方法
Boosting
Boosting是一族可将弱学习器提升为强学习器的算法。boosting方法通过分步迭代(stage-wise)的方式来构建模型,在迭代的每一步构建的弱学习器都是为了弥补已有模型的不足。(个体学习器之间存在强依赖关系。)
boosting族算法的著名代表:AdaBoost。
AdaBoost算法通过给已有模型预测错误的样本更高的权重,使得先前的学习器做错的训练样本在后续受到更多的关注的方式来弥补已有模型的不足。
GBDT主要由三个概念组成:
Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage (算法的一个重要演进分枝,目前大部分源码都按该版本实现)。搞定这三个概念后就能明白GBDT是如何工作的。
一、DT:回归树 Regression Decision Tree
提起决策树(DT, Decision Tree) 绝大部分人首先想到的就是C4.5分类决策树。但如果一开始就把GBDT中的树想成分类树,那就错了。千万不要以为GBDT是很多棵分类树。决策树分为两大类,回归树和分类树。前者用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;后者用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面。这里要强调的是,前者的结果加减是有意义的,如10岁+5岁-3岁=12岁,后者则无意义,如男+男+女=到底是男是女?GBDT的核心在于累加所有树的结果作为最终结果,就像前面对年龄的累加(-3是加负3),而分类树的结果显然是没办法累加的,所以GBDT中的树都是回归树,不是分类树,这点对理解GBDT相当重要(尽管GBDT调整后也可用于分类但不代表GBDT的树是分类树)。
回归树总体流程类似于分类树,区别在于,回归树的每一个节点都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是最小化平方误差。也就是被预测出错的人数越多,错的越离谱,平方误差就越大,通过最小化平方误差能够找到最可靠的分枝依据。分枝直到每个叶子节点上人的年龄都唯一或者达到预设的终止条件(如叶子个数上限),若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。
回归树算法如下图(截图来自《统计学习方法》5.5.1 CART生成):
二、 GB:梯度迭代 Gradient Boosting
梯度提升(Gradient boosting)是一种用于回归、分类和排序任务的机器学习技术[1],属于Boosting算法族的一部分。Boosting是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴。Boosting方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断要好。通俗地说,就是“三个臭皮匠顶个诸葛亮”的道理。梯度提升同其他boosting方法一样,通过集成(ensemble)多个弱学习器,通常是决策树,来构建最终的预测模型。
Boosting、bagging和stacking是集成学习的三种主要方法。
不同于bagging方法,boosting方法通过分步迭代(stage-wise)的方式来构建模型,在迭代的每一步构建的弱学习器都是为了弥补已有模型的不足。Boosting族算法的著名代表是AdaBoost。AdaBoost算法通过给已有模型预测错误的样本更高的权重,使得先前的学习器做错的训练样本在后续受到更多的关注的方式来弥补已有模型的不足。
相比于AdaBoost,梯度提升方法的优点:
虽然同属于Boosting族,但是梯度提升方法的优点比较多。
- 1、与AdaBoost算法不同,梯度提升方法在迭代的每一步构建一个能够沿着梯度最陡的方向降低损失(steepest-descent)的学习器来弥补已有模型的不足。
- 2、经典的AdaBoost算法只能处理采用指数损失函数的二分类学习任务,而梯度提升方法通过设置不同的可微损失函数可以处理各类学习任务(多分类、回归、Ranking等),应用范围大大扩展。
- 3、AdaBoost算法对异常点(outlier)比较敏感,而梯度提升算法通过引入bagging思想、加入正则项等方法能够有效地抵御训练数据中的噪音,具有更好的健壮性。
提升树是迭代多棵回归树来共同决策。当采用平方误差损失函数时,每一棵回归树学习的是之前所有树的结论和残差,拟合得到一个当前的残差回归树,残差的意义如公式:残差 = 真实值 - 预测值 。提升树即是整个迭代过程生成的回归树的累加。GBDT的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。
三、Gradient Boosting Decision Tree:梯度提升决策树
为什么梯度提升方法倾向于选择决策树(通常是CART树)作为基学习器呢?
这与决策树算法自身的优点有很大的关系:
1、 决策树可以认为是if-then规则的集合,易于理解,可解释性强,预测速度快;
2、决策树算法相比于其他的算法需要更少的特征工程,比如可以不用做特征标准化,可以很好的处理字段缺失的数据,也可以不用关心特征间是否相互依赖等
3、决策树能够自动组合多个特征,它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分。
举个例子,西瓜a(乌黑色、纹路清晰)可能是好瓜,西瓜b(青绿色,纹路清晰)的也可能是好瓜。决策树一样可以处理。
决策树有优点,自然也有缺点,不过,可以通过梯度提升方法解决这个缺点。
单独使用决策树算法时,有容易过拟合缺点。怎么解决呢?
- 通过各种方法,抑制决策树的复杂性,降低单棵决策树的拟合能力
- 通过梯度提升的方法集成多个决策树,则预测效果上来的同时,也能够很好的解决过拟合的问题。
(这一点具有bagging的思想,降低单个学习器的拟合能力,提高方法的泛化能力。)
由此可见,梯度提升方法和决策树学习算法可以互相取长补短,是一对完美的搭档。
怎么降低单棵决策树的复杂度?
抑制单颗决策树的复杂度的方法有很多:
- 限制树的最大深度、限制叶子节点的最少样本数量、限制节点分裂时的最少样本数量
- 吸收bagging的思想对训练样本采样(subsample),在学习单颗决策树时只使用一部分训练样本
- 借鉴随机森林的思路在学习单颗决策树时只采样一部分特征
- 在目标函数中添加正则项惩罚复杂的树结构等。
现在主流的GBDT算法实现中这些方法基本上都有实现,因此GBDT算法的超参数还是比较多的,应用过程中需要精心调参,并用交叉验证的方法选择最佳参数。
提升树利用加法模型和前向分步算法实现学习的优化过程。当损失函数时平方损失和指数损失函数时,每一步的优化很简单,如平方损失函数学习残差回归树。
前向分布算法(Forward stagewise additive modeling)
提升方法其实是一个比adaboost概念更大的算法,因为adaboost可以表示为boosting的前向分布算法(Forward stagewise additive modeling)的一个特例,boosting最终可以表示为:
其中的w是权重,Φ是弱分类器(回归器)的集合,其实就是一个加法模型(即基函数的线性组合)
前向分布算法实际上是一个贪心的算法,也就是在每一步求解弱分类器Φ(m)和其参数w(m)的时候不去修改之前已经求好的分类器和参数:
为了表示方便,我们以后用β代替w进行描述了,图中的b是之前说的Φ弱分类器
OK,这也就是提升方法(之前向分布算法)的大致结构了,可以看到其中存在变数的部分其实就是极小化损失函数 这关键的一步了,如何选择损失函数决定了算法的最终效果(名字)……这一步你可以看出算法的“趋势”,以后再单独把“趋势”拿出来说吧,因为我感觉理解算法的关键之一就是理解算法公式的“趋势”
各种提升方法
不同的损失函数和极小化损失函数方法决定了boosting的最终效果,我们现在来说几个常见的boosting:
广义上来讲,所谓的Gradient Boosting 其实就是在更新的时候选择梯度下降的方向来保证最后的结果最好,一些书上讲的“残差” 方法其实就是L2Boosting吧,因为它所定义的残差其实就是L2Boosting的Derivative,接下来我们着重讲一下弱回归器是决策树的情况,也就是GBDT。
加法模型(additive model)
GBDT算法可以看成是由K棵树组成的加法模型:
其中F为所有树组成的函数空间,以回归任务为例,回归树可以看作为一个把特征向量映射为某个score的函数。该模型的参数为:Θ = {f1, f2, ... , fk} 。于一般的机器学习算法不同的是,加法模型不是学习d维空间中的权重,而是直接学习函数(决策树)集合。上述加法模型的目标函数定义为:
其中Ω表示决策树的复杂度,那么该如何定义树的复杂度呢?比如,可以考虑树的节点数量、树的深度或者叶子节点所对应的分数的L2范数等等。
如何来学习加法模型呢?
解这一优化问题,可以用前向分布算法(forward stagewise algorithm)。因为学习的是加法模型,如果能够从前往后,每一步只学习一个基函数及其系数(结构),逐步逼近优化目标函数,那么就可以简化复杂度。这一学习过程称之为Boosting。具体地,我们从一个常量预测开始,每次学习一个新的函数,过程如下:
举个例子,参考自一篇博客, 该博客举出的例子较直观地展现出多棵决策树线性求和过程以及残差的意义。
还是年龄预测,简单起见训练集只有4个人,A,B,C,D,他们的年龄分别是14,16,24,26。其中A、B分别是高一和高三学生;C,D分别是应届毕业生和工作两年的员工。如果是用一棵传统的回归决策树来训练,会得到如下图1所示结果:
现在我们使用GBDT来做这件事,由于数据太少,我们限定叶子节点做多有两个,即每棵树都只有一个分枝,并且限定只学两棵树。我们会得到如下图2所示结果:
在第一棵树分枝和图1一样,由于A,B年龄较为相近,C,D年龄较为相近,他们被分为两拨,每拨用平均年龄作为预测值。此时计算残差(残差的意思就是: A的预测值 + A的残差 = A的实际值),所以A的残差就是15-16=-1(注意,A的预测值是指前面所有树累加的和,这里前面只有一棵树所以直接是15,如果还有树则需要都累加起来作为A的预测值)。进而得到A,B,C,D的残差分别为-1,1,-1,1。然后我们拿残差替代A,B,C,D的原值,到第二棵树去学习,如果我们的预测值和它们的残差相等,则只需把第二棵树的结论累加到第一棵树上就能得到真实年龄了。这里的数据显然是我可以做的,第二棵树只有两个值1和-1,直接分成两个节点。此时所有人的残差都是0,即每个人都得到了真实的预测值。
换句话说,现在A,B,C,D的预测值都和真实年龄一致了。Perfect!:
A: 14岁高一学生,购物较少,经常问学长问题;预测年龄A = 15 – 1 = 14
B: 16岁高三学生;购物较少,经常被学弟问问题;预测年龄B = 15 + 1 = 16
C: 24岁应届毕业生;购物较多,经常问师兄问题;预测年龄C = 25 – 1 = 24
D: 26岁工作两年员工;购物较多,经常被师弟问问题;预测年龄D = 25 + 1 = 26
那么哪里体现了Gradient呢?其实回到第一棵树结束时想一想,无论此时的cost function是什么,是均方差还是均差,只要它以误差作为衡量标准,残差向量(-1, 1, -1, 1)都是它的全局最优方向,这就是Gradient。
讲到这里我们已经把GBDT最核心的概念、运算过程讲完了!没错就是这么简单。
该例子很直观的能看到,预测值等于所有树值得累加,如A的预测值 = 树1左节点 值 15 + 树2左节点 -1 = 14。
因此,给定当前模型 fm-1(x),只需要简单的拟合当前模型的残差。现将回归问题的提升树算法叙述如下:
1)既然图1和图2 最终效果相同,为何还需要GBDT呢?
答案是过拟合。过拟合是指为了让训练集精度更高,学到了很多”仅在训练集上成立的规律“,导致换一个数据集当前规律就不适用了。其实只要允许一棵树的叶子节点足够多,训练集总是能训练到100%准确率的(大不了最后一个叶子上只有一个instance)。在训练精度和实际精度(或测试精度)之间,后者才是我们想要真正得到的。
我们发现图1为了达到100%精度使用了3个feature(上网时长、时段、网购金额),其中分枝“上网时长>1.1h” 很显然已经过拟合了,这个数据集上A,B也许恰好A每天上网1.09h, B上网1.05小时,但用上网时间是不是>1.1小时来判断所有人的年龄很显然是有悖常识的;
相对来说图2的boosting虽然用了两棵树 ,但其实只用了2个feature就搞定了,后一个feature是问答比例,显然图2的依据更靠谱。(当然,这里是LZ故意做的数据,所以才能靠谱得如此狗血。实际中靠谱不靠谱总是相对的) Boosting的最大好处在于,每一步的残差计算其实变相地增大了分错instance的权重,而已经分对的instance则都趋向于0。这样后面的树就能越来越专注那些前面被分错的instance。就像我们做互联网,总是先解决60%用户的需求凑合着,再解决35%用户的需求,最后才关注那5%人的需求,这样就能逐渐把产品做好,因为不同类型用户需求可能完全不同,需要分别独立分析。如果反过来做,或者刚上来就一定要做到尽善尽美,往往最终会竹篮打水一场空。
四、Shrinkage
Shrinkage(缩减)的思想认为,每次走一小步逐渐逼近结果的效果,要比每次迈一大步很快逼近结果的方式更容易避免过拟合。即它不完全信任每一个棵残差树,它认为每棵树只学到了真理的一小部分,累加的时候只累加一小部分,通过多学几棵树弥补不足。用方程来看更清晰,即
没用Shrinkage时:(yi表示第i棵树上y的预测值, y(1~i)表示前i棵树y的综合预测值)
y(i+1) = 残差(y1~yi), 其中: 残差(y1~yi) = y真实值 - y(1 ~ i)
y(1 ~ i) = SUM(y1, ..., yi)
Shrinkage不改变第一个方程,只把第二个方程改为:
y(1 ~ i) = y(1 ~ i-1) + step * yi
即Shrinkage仍然以残差作为学习目标,但对于残差学习出来的结果,只累加一小部分(step残差)逐步逼近目标,step一般都比较小,如0.01~0.001(注意该step非gradient的step),导致各个树的残差是渐变的而不是陡变的。直觉上这也很好理解,不像直接用残差一步修复误差,而是只修复一点点,其实就是把大步切成了很多小步。本质上,Shrinkage为每棵树设置了一个weight,累加时要乘以这个weight,但和Gradient并没有关系*。 这个weight就是step。就像Adaboost一样,Shrinkage能减少过拟合发生也是经验证明的,目前还没有看到从理论的证明。
GBDT的适用范围
该版本GBDT几乎可用于所有回归问题(线性/非线性),相对logistic regression仅能用于线性回归,GBDT的适用面非常广。亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例)。
五、XGboost/GBDT调参
推荐GBDT树的深度:6;(横向比较:DecisionTree/RandomForest需要把树的深度调到15或更高)
以下摘自知乎上的一个问答(详见参考文献8),问题和回复都很好的阐述了这个参数设置的数学原理。
【问】xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?
用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了。但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高。用RandomForest所需要的树的深度和DecisionTree一样我能理解,因为它是用bagging的方法把DecisionTree组合在一起,相当于做了多次DecisionTree一样。但是xgboost/gbdt仅仅用梯度上升法就能用6个节点的深度达到很高的预测精度,使我惊讶到怀疑它是黑科技了。请问下xgboost/gbdt是怎么做到的?它的节点和一般的DecisionTree不同吗?
【答】
这是一个非常好的问题,题主对各算法的学习非常细致透彻,问的问题也关系到这两个算法的本质。这个问题其实并不是一个很简单的问题,我尝试用我浅薄的机器学习知识对这个问题进行回答。
一句话的解释,来自周志华老师的机器学习教科书( 机器学习-周志华):Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成;Bagging主要关注降低方差,因此它在不剪枝的决策树、神经网络等学习器上效用更为明显。
随机森林(random forest)和GBDT都是属于集成学习(ensemble learning)的范畴。集成学习下有两个重要的策略Bagging和Boosting。
Bagging算法是这样做的:每个分类器都随机从原样本中做有放回的采样,然后分别在这些采样后的样本上训练分类器,然后再把这些分类器组合起来。简单的多数投票一般就可以。其代表算法是随机森林。Boosting的意思是这样,他通过迭代地训练一系列的分类器,每个分类器采用的样本分布都和上一轮的学习结果有关。其代表算法是AdaBoost, GBDT。
其实就机器学习算法来说,其泛化误差可以分解为两部分,偏差(bias)和方差(variance)。这个可由下图的式子导出(这里用到了概率论公式D(X)=E(X2)-[E(X)]2)。偏差指的是算法的期望预测与真实预测之间的偏差程度,反应了模型本身的拟合能力;方差度量了同等大小的训练集的变动导致学习性能的变化,刻画了数据扰动所导致的影响。这个有点儿绕,不过你一定知道过拟合。
如下图所示,当模型越复杂时,拟合的程度就越高,模型的训练偏差就越小。但此时如果换一组数据可能模型的变化就会很大,即模型的方差很大。所以模型过于复杂的时候会导致过拟合。
当模型越简单时,即使我们再换一组数据,最后得出的学习器和之前的学习器的差别就不那么大,模型的方差很小。还是因为模型简单,所以偏差会很大。
也就是说,当我们训练一个模型时,偏差和方差都得照顾到,漏掉一个都不行。
对于Bagging算法来说,由于我们会并行地训练很多不同的分类器的目的就是降低这个方差(variance) ,因为采用了相互独立的基分类器多了以后,h的值自然就会靠近.所以对于每个基分类器来说,目标就是如何降低这个偏差(bias),所以我们会采用深度很深甚至不剪枝的决策树。
对于Boosting来说,每一步我们都会在上一轮的基础上更加拟合原数据,所以可以保证偏差(bias),所以对于每个基分类器来说,问题就在于如何选择variance更小的分类器,即更简单的分类器,所以我们选择了深度很浅的决策树。
六、其他
Gradient Boosting算法:xgboost,在计算速度和准确率上,较GBDT有明显的提升。xgboost 的全称是eXtreme Gradient Boosting,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇 。xgboost最大的特点在于,它能够自动利用CPU的多线程进行并行,同时在算法上加以改进提高了精度。它的处女秀是Kaggle的 希格斯子信号识别竞赛,因为出众的效率与较高的预测准确度在比赛论坛中引起了参赛选手的广泛关注。值得我们在GBDT的基础上对其进一步探索学习。
参考:
https://www.jianshu.com/p/6755107e816d
[机器学习]梯度提升决策树--GBDT的更多相关文章
- 机器学习之梯度提升决策树GBDT
集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...
- 梯度提升决策树(GBDT)
1.提升树 以决策树为基函数的提升方法称为提升树.决策树可以分为分类树和回归树.提升树模型可以表示为决策树的加法模型. 针对不同的问题的提升术算法的主要区别就是损失函数的不同,对于回归问题我们选用平方 ...
- Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析
概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树. GBDT这个算法还有一些其他的名字,比如说MART(Multiple Addi ...
- GBDT:梯度提升决策树
http://www.jianshu.com/p/005a4e6ac775 综述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Ad ...
- chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况
单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...
- 机器学习 之梯度提升树GBDT
目录 1.基本知识点简介 2.梯度提升树GBDT算法 2.1 思路和原理 2.2 梯度代替残差建立CART回归树 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaB ...
- 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 梯度提升树(GBDT)原理小结(转载)
在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...
随机推荐
- php数组排序sort
php的数组分为数字索引型的数组,和关键字索引的数组.如果是数字索引的,可以这样使用:$names = ['Tom', 'Rocco','amiona'];sort($names);sort()函数只 ...
- JavaScript基础视频教程总结(111-120章)
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- Python开发——11.异常及异常处理
一.异常 1.定义 异常及时程序运行时发生错误的信号 2.种类 异常分为语法错误和逻辑错误,语法错误在程序执行之前就应该改正. 常用异常 AttributeError 试图访问一个对象没有的树形,比如 ...
- Note | 常用指令和教程
目录 Ubuntu操作系统 基础操作 SSH-ubuntu 登录退出 设置SSH秘钥以免密登录 设置别名以免IP登录 传输文件 设置短密码 驱动问题(循环自登陆,分辨率异常) boot空间不足 Win ...
- [swarthmore cs75] Lab 0 Warmup & Basic OCaml
课程回顾 Swarthmore学院16年开的编译系统课,总共10次大作业.本随笔记录了相关的课堂笔记以及第1次大作业. 什么是编译 编译就是执行Program->Program'转换的过程,如下 ...
- 【转】像素 Pixel (Picture Element)
原文链接:https://blog.csdn.net/zssureqh/article/details/78768942 1.像素Pixel 讲到概念,首选Wiki百科.当然我说的是英文版Pixel ...
- JS入门经典第二章总结
document:在对网页编写脚本时,我们使用document对象代表网页.要引用一个属性,只需在document对象后加一个“.”号,然后再加上要引用的属性名. alert():该函数弹出一个消息框 ...
- (1)selenium-java环境搭建
已经学过了用python模拟浏览器操作,现在开始尝试使用java搭建环境,开头第一步就遇到了很多的问题 1.准备jdk安装,不再描述,自行百度 2.安装eclipse 3.接下来就是新建项目了,new ...
- 2018年2月19日我的java学习(——)
在学完了类和对象的时候,开始对面向对象的思想有了一点认识,不过也不是完全的理解了. 就现在的学习状态来说,是非常的不错的,但是在学习的内容来说,我学的好像只是跟随这 站长的思路而已,也许是经验不足吧. ...
- SQL Server 2008 安装(lpt亲测)
SQL Server安装真的遇到好多问题啊!! 于是就决定写个备忘,方便自己也方便别人. 1.下载安装包 2.打开安装包,就遇到了restart computer 那里failed的错误,导致无法继 ...