1Spark介绍

Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目。随着Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用。2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录。Spark利用1/10的节点数,分钟提高到了分钟

Spark在架构上包括内核部分和4个官方子模块--Spark SQL、Spark Streaming、机器学习库MLlib和图计算库GraphX。图1所示为Spark在伯克利的数据分析软件栈BDAS(Berkeley Data Analytics Stack)中的位置。可见Spark专注于数据的计算,而数据的存储在生产环境中往往还是由Hadoop分布式文件系统HDFS承担。

图1 Spark在BDAS中的位置

Spark被设计成支持多场景的通用大数据计算平台,它可以解决大数据计算中的批处理,交互查询及流式计算等核心问题。Spark可以从多数据源的读取数据,并且拥有不断发展的机器学习库和图计算库供开发者使用。数据和计算在Spark内核及Spark的子模块中是打通的,这就意味着Spark内核和子模块之间成为一个整体。Spark的各个子模块以Spark内核为基础,进一步支持更多的计算场景,例如使用Spark SQL读入的数据可以作为机器学习库MLlib的输入。表1列举了一些在Spark平台上的计算场景。

表1 Spark的应用场景举例

在本文写作是,Spark的最新版本为1.2.0,文中的示例代码也来自于这个版本。

2Spark内核介绍 

相信大数据工程师都非常了解Hadoop MapReduce一个最大的问题是在很多应用场景中速度非常慢,只适合离线的计算任务。这是由于MapReduce需要将任务划分成map和reduce两个阶段,map阶段产生的中间结果要写回磁盘,而在这两个阶段之间需要进行shuffle操作。Shuffle操作需要从网络中的各个节点进行数据拷贝,使其往往成为最为耗时的步骤,这也是Hadoop MapReduce慢的根本原因之一,大量的时间耗费在网络磁盘IO中而不是用于计算。在一些特定的计算场景中,例如像逻辑回归这样的迭代式的计算,MapReduce的弊端会显得更加明显。

那Spark是如果设计分布式计算的呢?首先我们需要理解Spark中最重要的概念--弹性分布数据集(Resilient Distributed Dataset),也就是RDD。

2.1 弹性分布数据集RDD

RDD是Spark中对数据和计算的抽象,是Spark中最核心的概念,它表示已被分片(partition),不可变的并能够被并行操作的数据集合。对RDD的操作分为两种transformation和action。Transformation操作是通过转换从一个或多个RDD生成新的RDD。Action操作是从RDD生成最后的计算结果。在Spark最新的版本中,提供丰富的transformation和action操作,比起MapReduce计算模型中仅有的两种操作,会大大简化程序开发的难度。

RDD的生成方式只有两种,一是从数据源读入,另一种就是从其它RDD通过transformation操作转换。一个典型的Spark程序就是通过Spark上下文环境(SparkContext)生成一个或多个RDD,在这些RDD上通过一系列的transformation操作生成最终的RDD,最后通过调用最终RDD的action方法输出结果。

每个RDD都可以用下面5个特性来表示,其中后两个为可选的:

  • 分片列表(数据块列表)

  • 计算每个分片的函数

  • 对父RDD的依赖列表

  • 对key-value类型的RDD的分片器(Partitioner)(可选)

  • 每个数据分片的预定义地址列表(如HDFS上的数据块的地址)(可选)

虽然Spark是基于内存的计算,但RDD不光可以存储在内存中,根据useDisk、useMemory、useOffHeap, deserialized、replication五个参数的组合Spark提供了12种存储级别,在后面介绍RDD的容错机制时,我们会进一步理解。值得注意的是当StorageLevel设置成OFF_HEAP时,RDD实际被保存到Tachyon中。Tachyon是一个基于内存的分布式文件系统,目前正在快速发展,本文不做详细介绍,可以通过其官方网站进一步了解。

  1. class StorageLevel private(

  2. private var _useDisk: Boolean,

  3. private var _useMemory: Boolean,

  4. private var _useOffHeap: Boolean,

  5. private var _deserialized: Boolean

  6. private var _replication: Int = 1)

  7. extends Externalizable { //… }

  8. val NONE = new StorageLevel(false, false, false, false)

  9. val DISK_ONLY = new StorageLevel(true, false, false, false)

  10. val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)

  11. val MEMORY_ONLY = new StorageLevel(false, true, false, true)

  12. val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)

  13. val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)

  14. val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)

  15. val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)

  16. val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)

  17. val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)

  18. val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)

  19. val OFF_HEAP = new StorageLevel(false, false, true, false)

2.2 DAGStage与任务的生成

Spark的计算发生在RDD的action操作,而对action之前的所有transformation,Spark只是记录下RDD生成的轨迹,而不会触发真正的计算。

Spark内核会在需要计算发生的时刻绘制一张关于计算路径的有向无环图,也就是DAG。举个例子,在图2中,从输入中逻辑上生成A和C两个RDD,经过一系列transformation操作,逻辑上生成了F,注意,我们说的是逻辑上,因为这时候计算没有发生,Spark内核做的事情只是记录了RDD的生成和依赖关系。当F要进行输出时,也就是F进行了action操作,Spark会根据RDD的依赖生成DAG,并从起点开始真正的计算。

图2 逻辑上的计算过程:DAG

有了计算的DAG图,Spark内核下一步的任务就是根据DAG图将计算划分成任务集,也就是Stage,这样可以将任务提交到计算节点进行真正的计算。Spark计算的中间结果默认是保存在内存中的,Spark在划分Stage的时候会充分考虑在分布式计算中可流水线计算(pipeline)的部分来提高计算的效率,而在这个过程中,主要的根据就是RDD的依赖类型。根据不同的transformation操作,RDD的依赖可以分为窄依赖(Narrow Dependency)和宽依赖(Wide Dependency,在代码中为ShuffleDependency)两种类型。窄依赖指的是生成的RDD中每个partition只依赖于父RDD(s) 固定的partition。宽依赖指的是生成的RDD的每一个partition都依赖于父 RDD(s) 所有partition。窄依赖典型的操作有map, filter, union等,宽依赖典型的操作有groupByKey, sortByKey等。可以看到,宽依赖往往意味着shuffle操作,这也是Spark划分stage的主要边界。对于窄依赖,Spark会将其尽量划分在同一个stage中,因为它们可以进行流水线计算。

图3 RDD的宽依赖和窄依赖

我们再通过图4详细解释一下Spark中的Stage划分。我们从HDFS中读入数据生成3个不同的RDD,通过一系列transformation操作后再将计算结果保存回HDFS。可以看到这幅DAG中只有join操作是一个宽依赖,Spark内核会以此为边界将其前后划分成不同的Stage. 同时我们可以注意到,在图中Stage2中,从map到union都是窄依赖,这两步操作可以形成一个流水线操作,通过map操作生成的partition可以不用等待整个RDD计算结束,而是继续进行union操作,这样大大提高了计算的效率。

图4 Spark中的Stage划分

Spark在运行时会把Stage包装成任务提交,有父Stage的Spark会先提交父Stage。弄清楚了Spark划分计算的原理,我们再结合源码看一看这其中的过程。下面的代码是DAGScheduler中的得到一个RDD父Stage的函数,可以看到宽依赖为划分Stage的边界。

  1. /**

  2. * Get or create the list of parent stages for a given RDD. The stages will be assigned the

  3. * provided jobId if they haven't already been created with a lower jobId.

  4. */

  5. private def getParentStages(rdd: RDD[_], jobId: Int): List[Stage] = {

  6. val parents = new HashSet[Stage]

  7. val visited = new HashSet[RDD[_]]

  8. // We are manually maintaining a stack here to prevent StackOverflowError

  9. // caused by recursively visiting

  10. val waitingForVisit = new Stack[RDD[_]]

  11. def visit(r: RDD[_]) {

  12. if (!visited(r)) {

  13. visited += r

  14. // Kind of ugly: need to register RDDs with the cache here since

  15. // we can't do it in its constructor because # of partitions is unknown

  16. for (dep <- r.dependencies) {

  17. dep match {

  18. case shufDep: ShuffleDependency[_, _, _] =>

  19. parents += getShuffleMapStage(shufDep, jobId)

  20. case _ =>

  21. waitingForVisit.push(dep.rdd)

  22. }

  23. }

  24. }

  25. }

  26. waitingForVisit.push(rdd)

  27. while (!waitingForVisit.isEmpty) {

  28. visit(waitingForVisit.pop())

  29. }

  30. parents.toList

  31. }

上面提到Spark的计算是从RDD调用action操作时候触发的,我们来看一个action的代码

RDD的collect方法是一个action操作,作用是将RDD中的数据返回到一个数组中。可以看到,在此action中,会触发Spark上下文环境SparkContext中的runJob方法,这是一系列计算的起点。

  1. abstract class RDD[T: ClassTag](

  2. @transient private var sc: SparkContext,

  3. @transient private var deps: Seq[Dependency[_]]

  4. ) extends Serializable with Logging {

  5. //….

  6. /**

  7. * Return an array that contains all of the elements in this RDD.

  8. */

  9. def collect(): Array[T] = {

  10. val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)

  11. Array.concat(results: _*)

  12. }

  13. }

SparkContext拥有DAGScheduler的实例,在runJob方法中会进一步调用DAGScheduler的runJob方法。在此时,DAGScheduler会生成DAG和Stage,将Stage提交给TaskScheduler。TaskSchduler将Stage包装成TaskSet,发送到Worker节点进行真正的计算,同时还要监测任务状态,重试失败和长时间无返回的任务。整个过程如图5所示。

图5 Spark中任务的生成

2.3 RDD的缓存与容错

上文提到,Spark的计算是从action开始触发的,如果在action操作之前逻辑上很多transformation操作,一旦中间发生计算失败,Spark会重新提交任务,这在很多场景中代价过大。还有一些场景,如有些迭代算法,计算的中间结果会被重复使用,重复计算同样增加计算时间和造成资源浪费。因此,在提高计算效率和更好支持容错,Spark提供了基于RDDcache机制和checkpoint机制。

我们可以通过RDD的toDebugString来查看其递归的依赖信息,图6展示了在spark shell中通过调用这个函数来查看wordCount RDD的依赖关系,也就是它的Lineage.

图6 RDD wordCount的lineage

如果发现Lineage过长或者里面有被多次重复使用的RDD,我们就可以考虑使用cache机制或checkpoint机制了。

我们可以通过在程序中直接调用RDD的cache方法将其保存在内存中,这样这个RDD就可以被多个任务共享,避免重复计算。另外,RDD还提供了更为灵活的persist方法,可以指定存储级别。从源码中可以看到RDD.cache就是简单的调用了RDD.persist(StorageLevel.MEMORY_ONLY)。

  1. /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */

  2. def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

  3. def cache(): this.type = persist()

同样,我们可以调用RDD的checkpoint方法将其保存到磁盘。我们需要在SparkContext中设置checkpoint的目录,否则调用会抛出异常。值得注意的是,在调用checkpoint之前建议先调用cache方法将RDD放入内存,否则将RDD保存到文件的时候需要重新计算。

  1. /**

  2. * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint

  3. * directory set with SparkContext.setCheckpointDir() and all references to its parent

  4. * RDDs will be removed. This function must be called before any job has been

  5. * executed on this RDD. It is strongly recommended that this RDD is persisted in

  6. * memory, otherwise saving it on a file will require recomputation.

  7. */

  8. def checkpoint() {

  9. if (context.checkpointDir.isEmpty) {

  10. throw new SparkException("Checkpoint directory has not been set in the SparkContext")

  11. } else if (checkpointData.isEmpty) {

  12. checkpointData = Some(new RDDCheckpointData(this))

  13. checkpointData.get.markForCheckpoint()

  14. }

  15. }

Cache机制和checkpoint机制的差别在于cache将RDD保存到内存,并保留Lineage,如果缓存失效RDD还可以通过Lineage重建。而checkpoint将RDD落地到磁盘并切断Lineage,由文件系统保证其重建。

2.4 Spark任务的部署

Spark的集群部署分为Standalone、Mesos和Yarn三种模式,我们以Standalone模式为例,简单介绍Spark程序的部署。如图7示,集群中的Spark程序运行时分为3种角色,driver, master和worker(slave)。在集群启动前,首先要配置master和worker节点。启动集群后,worker节点会向master节点注册自己,master节点会维护worker节点的心跳。Spark程序都需要先创建Spark上下文环境,也就是SparkContext。创建SparkContext的进程就成为了driver角色,上一节提到的DAGScheduler和TaskScheduler都在driver中运行。Spark程序在提交时要指定master的地址,这样可以在程序启动时向master申请worker的计算资源。Driver,master和worker之间的通信由Akka支持。Akka 也使用 Scala 编写,用于构建可容错的、高可伸缩性的Actor 模型应用。关于Akka,可以访问其官方网站进行进一步了解,本文不做详细介绍。

图7 Spark任务部署

3、更深一步了解Spark内核

了解了Spark内核的基本概念和实现后,更深一步理解其工作原理的最好方法就是阅读源码。最新的Spark源码可以从Spark官方网站下载。源码推荐使用IntelliJ IDEA阅读,会自动安装Scala插件。读者可以从core工程,也就是Spark内核工程开始阅读,更可以设置断点尝试跟踪一个任务的执行。另外,读者还可以通过分析Spark的日志来进一步理解Spark的运行机制,Spark使用log4j记录日志,可以在启动集群前修改log4j的配置文件来配置日志输出和格式。

【编辑推荐】

  1. Spark:利用Eclipse构建Spark集成开发环境

  2. Spark实战:单节点本地模式搭建Spark运行环境

  3. Spark:为大数据处理点亮一盏明灯

  4. 专访Spark亚太研究院王家林:从技术的角度探索Spark

  5. Storm与Spark:谁才是我们的实时处理利器

大数据计算平台Spark内核全面解读的更多相关文章

  1. 大数据计算平台Spark内核解读

    1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着 Spark在大数据计算领域的暂露头角,越来越多 ...

  2. 王坚十年前的坚持,才有了今天世界顶级大数据计算平台MaxCompute

    如果说十年前,王坚创立阿里云让云计算在国内得到了普及,那么王坚带领团队自主研发的大数据计算平台MaxCompute则推动大数据技术向前跨越了一大步. 数据是企业的核心资产,但十年前阿里巴巴的算力已经无 ...

  3. 大数据计算新贵Spark在腾讯雅虎优酷成功应用解析

    http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等 ...

  4. 一个简单的使用Quartz和Oozie调度作业给大数据计算平台执行

    一,介绍 Oozie是一个基于Hadoop的工作流调度器,它可以通过Oozie Client 以编程的形式提交不同类型的作业,如MapReduce作业和Spark作业给底层的计算平台(如 Cloude ...

  5. 基于MaxCompute的媒体大数据开放平台建设

    摘要:随着自媒体的发展,传统媒体面临着巨大的压力和挑战,新华智云运用大数据和人工智能技术,致力于为媒体行业赋能.通过媒体大数据开放平台,将媒体行业全网数据汇总起来,借助平台数据处理能力和算法能力,将有 ...

  6. 大数据体系概览Spark、Spark核心原理、架构原理、Spark特点

    大数据体系概览Spark.Spark核心原理.架构原理.Spark特点 大数据体系概览(Spark的地位) 什么是Spark? Spark整体架构 Spark的特点 Spark核心原理 Spark架构 ...

  7. 揭秘阿里云EB级大数据计算引擎MaxCompute

    日前,全球权威咨询与服务机构Forrester发布了<The Forrester WaveTM: Cloud Data Warehouse, Q4 2018>报告.这是Forrester ...

  8. 大数据计算框架Hadoop, Spark和MPI

    转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什 ...

  9. 大数据实时处理-基于Spark的大数据实时处理及应用技术培训

    随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的 ...

随机推荐

  1. 微信开发中网页授权access_token与基础支持的access_token异同 【转载、收藏】

    问题1:网页授权access_token与分享的jssdk中的access_token一样吗? 答:不一样.网页授权access_token 是一次性的,而基础支持的access_token的是有时间 ...

  2. MVC查找排序分页学习

    2018-08-07 16:04:11 实现常用功能(Index.cshtml中) 1.查找 2.用户名排序(点击用户名) 3.分页功能(数据库MVCDemo可以添加用户) 源代码参考如下: 链接:  ...

  3. JQuery官方学习资料(译):遍历

        一旦你通过JQuery创建了选择器,你就可以对此进行更为深入的遍历.遍历可以分为三个基本组成部分,父节点.子节点和兄弟节点.JQuery为这些部分提供了许多丰富易用的方法. <div c ...

  4. NGUI 做局部2d卷轴

    网上找到的都是做整个背景的卷轴动画,通常是改变纹理位置或者背景图片的x坐标 没有提到在UI界面里某个部分做卷轴动画,找了很久,才发现NGUI的Panel里的Clipping属性可以裁剪Panel的大小 ...

  5. OpenOffice安装和转换乱码解决方案

      前言: OpenOffice项目中用途:word转换pdf Windows安装.转换:安装包下载后一路OK 就可以正常安装,转换没有问题 Linux安装.转换:安装有分DEB包和RPM包,下面会说 ...

  6. 异常:Data = 由于代码已经过优化或者本机框架位于调用堆栈之上,无法计算表达式的值。

    做项目的时候,将DataTable序列化成Json,通过ashx向前台返回数据的时候,前台总是获取不到数据,但是程序运行却没问题, 没抛出异常.一时找不到办法,减小输出的数据量,这时前台可以接收到页面 ...

  7. Js中的闭包原理

    要了解清楚js中的闭包制机,那么得先了解全局执行环境.块级执行环境.函数执行环境.变量对象.环境栈.作用域链.摧毁执行环境. 全局执行环境 全局执行环境指的是最外层的执行环境.在web中全局执行环境被 ...

  8. 一个优秀的SEOer必须掌握的三大标配技术

    首先,认识网页代码是基础 这里所讲的网页代码是指HTML代码,并不是指复杂的PHP模板技术.一般的培训机构总是提倡学SEO不用学网页代码,只要会购买域名空间搭建网站就行,因为现在的网站模板太丰富了,对 ...

  9. js 返回小数点后几位

    function fmoney(s, n) //s:传入的float数字 ,n:希望返回小数点几位 { n = n > 0 && n <= 20 ? n : 2; s = ...

  10. file上传图片,base64转换、压缩图片、预览图片、将图片旋转到正确的角度

    /** * 将base64转换为文件对象 * (即用文件上传输入框上传文件得到的对象) * @param {String} base64 base64字符串 */ function convertBa ...