SVM—PK—BP:SVR(better)和BP两种方法比较且实现建筑物钢筋混凝土抗压强度预测—Jason niu
load concrete_data.mat n = randperm(size(attributes,2)); p_train = attributes(:,n(1:80))';
t_train = strength(:,n(1:80))'; p_test = attributes(:,n(81:end))';
t_test = strength(:,n(81:end))'; [pn_train,inputps] = mapminmax(p_train');
pn_train = pn_train';
pn_test = mapminmax('apply',p_test',inputps);
pn_test = pn_test'; [tn_train,outputps] = mapminmax(t_train');
tn_train = tn_train';
tn_test = mapminmax('apply',t_test',outputps);
tn_test = tn_test'; [c,g] = meshgrid(-10:0.5:10,-10:0.5:10);
[m,n] = size(c);
cg = zeros(m,n);
eps = 10^(-4);
v = 5;
bestc = 0;
bestg = 0;
error = Inf;
for i = 1:m
for j = 1:n
cmd = ['-v ',num2str(v),' -t 2',' -c ',num2str(2^c(i,j)),' -g ',num2str(2^g(i,j) ),' -s 3 -p 0.1'];
cg(i,j) = svmtrain(tn_train,pn_train,cmd);
if cg(i,j) < error
error = cg(i,j);
bestc = 2^c(i,j);
bestg = 2^g(i,j);
end
if abs(cg(i,j) - error) <= eps && bestc > 2^c(i,j)
error = cg(i,j);
bestc = 2^c(i,j);
bestg = 2^g(i,j);
end
end
end cmd = [' -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg),' -s 3 -p 0.01'];
model = svmtrain(tn_train,pn_train,cmd); [Predict_1,error_1] = svmpredict(tn_train,pn_train,model);
[Predict_2,error_2] = svmpredict(tn_test,pn_test,model); predict_1 = mapminmax('reverse',Predict_1,outputps);
predict_2 = mapminmax('reverse',Predict_2,outputps); result_1 = [t_train predict_1];
result_2 = [t_test predict_2]; figure(1)
plot(1:length(t_train),t_train,'r-*',1:length(t_train),predict_1,'b:o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('耐压强度')
string_1 = {'训练集预测结果对比(SVM之SVR)—Jason niu';
['mse = ' num2str(error_1(2)) ' R^2 = ' num2str(error_1(3))]};
title(string_1)
figure(2)
plot(1:length(t_test),t_test,'r-*',1:length(t_test),predict_2,'b:o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('耐压强度')
string_2 = {'SVM之SVR测试集预测结果对比(SVM之SVR)—Jason niu';
['mse = ' num2str(error_2(2)) ' R^2 = ' num2str(error_2(3))]};
title(string_2) %BP神经网络
pn_train = pn_train';
tn_train = tn_train';
pn_test = pn_test';
tn_test = tn_test'; net = newff(pn_train,tn_train,10); net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.trainParam.show = 10;
net.trainParam.lr = 0.1; net = train(net,pn_train,tn_train); tn_sim = sim(net,pn_test); E = mse(tn_sim - tn_test); N = size(t_test,1);
R2=(N*sum(tn_sim.*tn_test)-sum(tn_sim)*sum(tn_test))^2/((N*sum((tn_sim).^2)-(sum(tn_sim))^2)*(N*sum((tn_test).^2)-(sum(tn_test))^2)); t_sim = mapminmax('reverse',tn_sim,outputps); figure(3)
plot(1:length(t_test),t_test,'r-*',1:length(t_test),t_sim,'b:o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('耐压强度')
string_3 = {'测试集预测结果对比(BP神经网络)—Jason niu';
['mse = ' num2str(E) ' R^2 = ' num2str(R2)]};
title(string_3)
SVM—PK—BP:SVR(better)和BP两种方法比较且实现建筑物钢筋混凝土抗压强度预测—Jason niu的更多相关文章
- TF:Tensorflor之session会话的使用,定义两个矩阵,两种方法输出2个矩阵相乘的结果—Jason niu
import tensorflow as tf matrix1 = tf.constant([[3, 20]]) matrix2 = tf.constant([[6], [100]]) product ...
- .net中创建xml文件的两种方法
.net中创建xml文件的两种方法 方法1:根据xml结构一步一步构建xml文档,保存文件(动态方式) 方法2:直接加载xml结构,保存文件(固定方式) 方法1:动态创建xml文档 根据传递的值,构建 ...
- 选中没有选中的复选框,匹配含有某个字符串的正则,json取值的两种方法,把变量定义在外面跟里面的区别
一.筛选没有选中的复选框:not("input:checked") 二.匹配有VARCHAR的字符串:".*VARCHAR.*?" 三.json取值的两种方法 ...
- jquery-12 折叠面板如何实现(两种方法)
jquery-12 折叠面板如何实现(两种方法) 一.总结 一句话总结:1.根据点击次数来判断显示还是隐藏,用data方法保证每个元素一个点击次数:2.找到元素的下一个,然后toggle实现显示隐藏. ...
- windows下获取IP地址的两种方法
windows下获取IP地址的两种方法: 一种可以获取IPv4和IPv6,但是需要WSAStartup: 一种只能取到IPv4,但是不需要WSAStartup: 如下: 方法一:(可以获取IPv4和I ...
- android 之 启动画面的两种方法
现在,当我们打开任意的一个app时,其中的大部分都会显示一个启动界面,展示本公司的logo和当前的版本,有的则直接把广告放到了上面.启动画面的可以分为两种设置方式:一种是两个Activity实现,和一 ...
- [转载]C#读写txt文件的两种方法介绍
C#读写txt文件的两种方法介绍 by 大龙哥 1.添加命名空间 System.IO; System.Text; 2.文件的读取 (1).使用FileStream类进行文件的读取,并将它转换成char ...
- php如何防止图片盗用/盗链的两种方法(转)
图片防盗链有什么用? 防止其它网站盗用你的图片,浪费你宝贵的流量.本文章向大家介绍php防止图片盗用/盗链的两种方法 Apache图片重定向方法 设置images目录不充许http访问 Apache服 ...
- WPF程序将DLL嵌入到EXE的两种方法
WPF程序将DLL嵌入到EXE的两种方法 这一篇可以看作是<Visual Studio 版本转换工具WPF版开源了>的续,关于<Visual Studio 版本转换工具WPF版开源了 ...
随机推荐
- oracle user locked(timed)处理
故障现象: SQL> connect scott/scottERROR:ORA-01017: invalid username/password; logon deniedSQL> con ...
- Confluence 6 整合到其他数据库
这个文档描述了如何整合你的 Confluence 数据库从你已经存在的数据库上到其他的数据库.这个指南被用来指导你从使用评估数据库转移到使用生产数据库. 大数据量需要第三方的数据库整合工具. 本页面对 ...
- Confluence 6 PostgreSQL 设置准备
请查看 Supported Platforms 页面来获得 Confluence 系统支持的 PostgreSQL 数据库版本.你需要在安装 Confluence 之前升级你的 PostgreSQL ...
- Saruman's Army(POJ3069)
Description Saruman the White must lead his army along a straight path from Isengard to Helm’s Deep. ...
- requests 的基本用法
r = requests.get('www.baidu.com') r.request.headers{'User-Agent': 'python-requests/2.18.4', 'Accept- ...
- 《剑指offer》从尾到头打印链表
本题来自<剑指offer> 从尾到头打印链表 题目: 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 思路: 方案一:首先遍历到尾部,然后从尾部进行到头值进行操作,后进先 ...
- JS判断元素 动画是否执行完成
使用animationend方法 var ele = document.getElementById("box"); ele.addEventListener("anim ...
- 手机app数据的爬取之mitmproxy安装教程
mitmproxy是一个支持HTTP和HTTPS的抓包程序,类似Fiddler.Charles的功能,只不过它通过控制台的形式操作. 此外,mitmproxy还有两个关联组件,一个是mitmdump, ...
- paython3-练习
在文本每行末尾加; f = open(r'D:\test1\1.txt','rb') w = open(r'D:\test1\2.txt','wb') for line in f.readlines( ...
- Caffe和py-faster-rcnn日常使用备忘录
罗列日常使用中遇到的问题和解决办法.包括: { caffe使用中的疑惑和解释: 无法正常执行 train/inference 的情况: Caffe基础工具的微小调整,比如绘loss曲线图: 调试pyt ...