1、Bike Sharing Demand

kaggle: https://www.kaggle.com/c/bike-sharing-demand

目的:根据日期、时间、天气、温度等特征,预测自行车的租借量

处理:1、将日期(含年月日时分秒)提取出年,月, 星期几,以及小时

2、season, weather都是类别标记的,利用哑变量编码

算法模型选取:

回归问题:1、RandomForestRegressor

2、GradientBoostingRegressor

# -*- coding: utf- -*-
import csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt train = pd.read_csv('data/train.csv')
test = pd.read_csv('data/test.csv') # 选取特征值
selected_features = ['datetime', 'season', 'holiday',
'workingday', 'weather', 'temp', 'atemp', 'humidity', 'windspeed'] #X_train = train[selected_features]
Y_train = train["count"]
result = test["datetime"] # 特征值处理
month = pd.DatetimeIndex(train.datetime).month
day = pd.DatetimeIndex(train.datetime).dayofweek
hour = pd.DatetimeIndex(train.datetime).hour
season = pd.get_dummies(train.season)
weather = pd.get_dummies(train.weather) X_train = pd.concat([season, weather], axis=)
X_test = pd.concat([pd.get_dummies(test.season), pd.get_dummies(test.weather)], axis=)
X_train['month'] = month
X_test['month'] = pd.DatetimeIndex(test.datetime).month
X_train['day'] = day
X_test['day'] = pd.DatetimeIndex(test.datetime).dayofweek
X_train['hour'] = hour
X_test['hour'] = pd.DatetimeIndex(test.datetime).hour
X_train['holiday'] = train['holiday']
X_test['holiday'] = test['holiday']
X_train['workingday'] = train['workingday']
X_test['workingday'] = test['workingday']
X_train['temp'] = train['temp']
X_test['temp'] = test['temp']
X_train['humidity'] = train['humidity']
X_test['humidity'] = test['humidity']
X_train['windspeed'] = train['windspeed']
X_test['windspeed'] = test['windspeed'] from sklearn.ensemble import *
clf = GradientBoostingRegressor(n_estimators=, max_depth=)
clf.fit(X_train, Y_train)
result = clf.predict(X_test)
result = np.expm1(result) df=pd.DataFrame({'datetime':test['datetime'], 'count':result})
df.to_csv('results1.csv', index = False, columns=['datetime','count']) from sklearn.ensemble import RandomForestRegressor
gbr = RandomForestRegressor()
gbr.fit(X_train, Y_train) y_predict = gbr.predict(X_test).astype(int) df = pd.DataFrame({'datetime': test.datetime, 'count': y_predict})
df.to_csv('result2.csv', index=False, columns=['datetime', 'count'])
#predictions_file = open("RandomForestRegssor.csv", "wb")
#open_file_object = csv.writer(predictions_file)
#open_file_object.writerow(["datetime", "count"])
#open_file_object.writerows(zip(res_time, y_predict))

2、Daily News for Stock Market Prediction

通过历史数据:包含每日点击率最高的25条新闻,与当日股市涨跌,来预测未来股市涨跌

方法一:

1、将25条新闻合并成一篇新闻,然后对每个单词做预处理(去掉特殊字符,含数字的单词,删除停词,变成小写,取词干),然后用TF-IDF提取特征,用SVM训练

2、用word2vec提取特征

具体实现:

https://github.com/yjfiejd/News_predict

3、

kaggle竞赛入门整理的更多相关文章

  1. Kaggle竞赛入门(二):如何验证机器学习模型

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

  2. Kaggle竞赛入门:决策树算法的Python实现

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

  3. 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

    <Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...

  4. 《机器学习及实践--从零开始通往Kaggle竞赛之路》

    <机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于 ...

  5. kaggle竞赛分享:NFL大数据碗(上篇)

    kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www ...

  6. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  7. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  8. (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO

    http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...

  9. [刷题]算法竞赛入门经典 3-12/UVa11809

    书上具体所有题目:http://pan.baidu.com/s/1hssH0KO 题目:算法竞赛入门经典 3-4/UVa11809:Floating-Point Numbers 代码: //UVa11 ...

随机推荐

  1. python与java的内存机制不一样;java的方法会进入方法区直到对象消失 方法才会消失;python的方法是对象每次调用都会创建新的对象 内存地址都不i一样

    python与java的内存机制不一样;java的方法会进入方法区直到对象消失 方法才会消失;python的方法是对象每次调用都会创建新的对象 内存地址都不i一样

  2. 自定义django-admin命令

    我们可以通过manage.py编写和注册自定义的命令. 自定义的管理命令对于独立脚本非常有用,特别是那些使用Linux的crontab服务,或者Windows的调度任务执行的脚本.比如,你有个需求,需 ...

  3. 关于i++和i++的左值、右值问题

    1.什么是左值和右值? 左值就是出现在表达式左边的值(等号左边),可以被改变,他是存储数据值的那块内存的地址,也称为变量的地址: 右值是指存储在某内存地址中的数据,也称为变量的数据. 左值可以作为右值 ...

  4. BZOJ1430小猴打架——prufer序列

    题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...

  5. Redis——Linux(centos7.x)下Redi和PHP Redis插件安装——【一】

    Redis 安装 下载地址:http://redis.io/download,下载最新文档版本. $ wget http://download.redis.io/releases/redis-4.0. ...

  6. Android 根据版本号更新

    1 读取android 版本号 具体文件位置: app下 build.gradle文件 versionCode和 versionName defaultConfig { versionCode 1 v ...

  7. bzoj 2733 : [HNOI2012]永无乡 (线段树合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  8. PhantomJS报错warnings.warn('Selenium support for PhantomJS has been deprecated, please use headless '

    原因:Selenuim已经放弃PhantomJS3.x了,建议使用火狐或者谷歌无头浏览器. 解决方法: 1.phantomjs降级,换个2.x版本的 2.使用无头浏览器,示例代码(自己改了改,如有错误 ...

  9. HAOI(十二省联考)2019 qwq记

    \(\large{Day\ -1}:\) 放假了,白天大概是抱着最后一次在机房的心态复习着板子过去的.看着机房里的各位神仙丝毫不慌的颓倒是有点慌了,敲了一下多项式的板子感觉写的相当自闭,感觉AFO应该 ...

  10. mailkit库收发邮件

    mailkit库用于收发邮件.这个库可以替代C#自带的发邮件库 环境  W10 / VS2017CMMT / MailKit version="2.0.3" "net46 ...