1、Bike Sharing Demand

kaggle: https://www.kaggle.com/c/bike-sharing-demand

目的:根据日期、时间、天气、温度等特征,预测自行车的租借量

处理:1、将日期(含年月日时分秒)提取出年,月, 星期几,以及小时

2、season, weather都是类别标记的,利用哑变量编码

算法模型选取:

回归问题:1、RandomForestRegressor

2、GradientBoostingRegressor

# -*- coding: utf- -*-
import csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt train = pd.read_csv('data/train.csv')
test = pd.read_csv('data/test.csv') # 选取特征值
selected_features = ['datetime', 'season', 'holiday',
'workingday', 'weather', 'temp', 'atemp', 'humidity', 'windspeed'] #X_train = train[selected_features]
Y_train = train["count"]
result = test["datetime"] # 特征值处理
month = pd.DatetimeIndex(train.datetime).month
day = pd.DatetimeIndex(train.datetime).dayofweek
hour = pd.DatetimeIndex(train.datetime).hour
season = pd.get_dummies(train.season)
weather = pd.get_dummies(train.weather) X_train = pd.concat([season, weather], axis=)
X_test = pd.concat([pd.get_dummies(test.season), pd.get_dummies(test.weather)], axis=)
X_train['month'] = month
X_test['month'] = pd.DatetimeIndex(test.datetime).month
X_train['day'] = day
X_test['day'] = pd.DatetimeIndex(test.datetime).dayofweek
X_train['hour'] = hour
X_test['hour'] = pd.DatetimeIndex(test.datetime).hour
X_train['holiday'] = train['holiday']
X_test['holiday'] = test['holiday']
X_train['workingday'] = train['workingday']
X_test['workingday'] = test['workingday']
X_train['temp'] = train['temp']
X_test['temp'] = test['temp']
X_train['humidity'] = train['humidity']
X_test['humidity'] = test['humidity']
X_train['windspeed'] = train['windspeed']
X_test['windspeed'] = test['windspeed'] from sklearn.ensemble import *
clf = GradientBoostingRegressor(n_estimators=, max_depth=)
clf.fit(X_train, Y_train)
result = clf.predict(X_test)
result = np.expm1(result) df=pd.DataFrame({'datetime':test['datetime'], 'count':result})
df.to_csv('results1.csv', index = False, columns=['datetime','count']) from sklearn.ensemble import RandomForestRegressor
gbr = RandomForestRegressor()
gbr.fit(X_train, Y_train) y_predict = gbr.predict(X_test).astype(int) df = pd.DataFrame({'datetime': test.datetime, 'count': y_predict})
df.to_csv('result2.csv', index=False, columns=['datetime', 'count'])
#predictions_file = open("RandomForestRegssor.csv", "wb")
#open_file_object = csv.writer(predictions_file)
#open_file_object.writerow(["datetime", "count"])
#open_file_object.writerows(zip(res_time, y_predict))

2、Daily News for Stock Market Prediction

通过历史数据:包含每日点击率最高的25条新闻,与当日股市涨跌,来预测未来股市涨跌

方法一:

1、将25条新闻合并成一篇新闻,然后对每个单词做预处理(去掉特殊字符,含数字的单词,删除停词,变成小写,取词干),然后用TF-IDF提取特征,用SVM训练

2、用word2vec提取特征

具体实现:

https://github.com/yjfiejd/News_predict

3、

kaggle竞赛入门整理的更多相关文章

  1. Kaggle竞赛入门(二):如何验证机器学习模型

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

  2. Kaggle竞赛入门:决策树算法的Python实现

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

  3. 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

    <Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...

  4. 《机器学习及实践--从零开始通往Kaggle竞赛之路》

    <机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于 ...

  5. kaggle竞赛分享:NFL大数据碗(上篇)

    kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www ...

  6. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  7. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  8. (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO

    http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...

  9. [刷题]算法竞赛入门经典 3-12/UVa11809

    书上具体所有题目:http://pan.baidu.com/s/1hssH0KO 题目:算法竞赛入门经典 3-4/UVa11809:Floating-Point Numbers 代码: //UVa11 ...

随机推荐

  1. codeforces982F

    The Meeting Place Cannot Be Changed CodeForces - 982F Petr is a detective in Braginsk. Somebody stol ...

  2. linux 安装Brew

    点击查看原文 Linuxbrew:Linux下的Homebrew amendgit 关注 2017.02.16 17:20* 字数 455 阅读 4745评论 0喜欢 2 前不久还在跟同事抱怨ubun ...

  3. DRF 分页组件

    Django Rest Framework 分页组件 DRF的分页 为什么要使用分页 其实这个不说大家都知道,大家写项目的时候也是一定会用的, 我们数据库有几千万条数据,这些数据需要展示,我们不可能直 ...

  4. Bootstrap 框架

    一,Bootstrap介绍 Bootstrap是Twitter开源的基于HTML.CSS.JavaScript的前端框架. 它是为实现快速开发Web应用程序而设计的一套前端工具包. 它支持响应式布局, ...

  5. 基于 __new__ 方法的单例模式

    单例模式定义 首次实例化创建实例化对象 之后的每次实例化都用最初的实例化对象 即单实例模式 __new__ 的原理 __new__ 方法可以在 __init__ 方法执行 这样可以在初始化之前进行一系 ...

  6. edit 控件之隐藏光标

    @2019-02-22 [小记] 禁止聚焦功能便可实现

  7. Docker使用阿里云docker镜像加速

    首先进入阿里云docker库首页 https://dev.aliyun.com/ 点击 管理中心 点击 加速器 复制下面的加速地址 进入docker的 Settings 把basic 切换成 adva ...

  8. CSS居中的几种方式总结

    1.水平居中的 margin:0 auto; 这个是用于子元素上的,前提是不受float影响 <style type="text/css"> .box{ width: ...

  9. cf1073D Berland Fair (二分答案+树状数组)

    用一个树状数组维护前缀和,每次我二分地找一个位置,使得我能一路买过去 但这个买不了 那以后肯定也都买不了了,就把它改成0,再从头二分地找下一个位置,直到这一圈我可以跑下来 然后就看跑这一圈要花多少钱. ...

  10. BZOJ2244 拦截导弹

    此题最早看到是在我还什么都不会的去年的暑期集训,是V8讲的DP专题,我当时还跑去问这概率怎么做.这道题要求的是二维最长不上升子序列,加上位置一维就成了三维偏序问题,也就是套用CDQ分治,对位置排序,然 ...