[TJOI2017]城市
嘟嘟嘟
这题刚开始想复杂了,想什么dp去了,其实没那么难。
考虑断掉一条边,记分离出来的两棵子树为A和B,那么合并后的树的直径可能有三种情况:
1.A的直径。
2.B的直径
3.A的半径+边权+B的半径。
半径是啥?记从点\(i\)出发到树上任意一点的最长距离为\(f[i]\),则树的半径就是\(min \{ f[i] \}\)(此题需要min,严格定义我也不知道是max还是min)。
所以我们\(O(n)\)枚举断边,\(O(n)\)求树的直径和半径即可。
直径不必说,说一下怎么求半径。
对于点\(v\),记\(v\)的父亲为\(u\), \(v\)的半径有这么几种情况:
1.\(v\)子树内的最长链。
2.\(v\)子树外,\(u\)子树内的一条链 + \(dis(u, v)\)。
3.\(u\)子树外的最长链 + \(dis(u, v)\)。
对于情况1,求树的直径的时候就维护好了。
对于情况2,我们需要维护最长连和次长链。然后如果\(v\)在\(u\)的最长链上,就是\(u\)的次长链 + \(dis(u, v)\);否则就是\(u\)的最长链 + \(dis(u, v)\)。
对于情况3,在dfs的时候维护一个fro,表示\(u\)子树外的最长链,维护fro的时候也向情况2分两种情况,分别更新即可。
答案就是所以直径的min。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e3 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
struct Node
{
int x, y, w;
}t[maxn];
struct Edge
{
int nxt, to, w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
}
bool col[maxn];
int dp1[maxn], dp2[maxn], dia_Max = 0;
In void dfs(int now, int _f, int c)
{
dp1[now] = 0, col[now] = c;
int Max1 = 0, Max2 = 0;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
dfs(v, now, c);
if(dp1[v] + e[i].w > Max1) Max2 = Max1, Max1 = dp1[v] + e[i].w;
else if(dp1[v] + e[i].w > Max2) Max2 = dp1[v] + e[i].w;
}
dp1[now] = Max1; dp2[now] = Max2;
dia_Max = max(dia_Max, Max1 + Max2);
}
int f[maxn];
In void dfs2(int now, int _f, int fro)
{
int tp = 0;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
if(dp1[v] + e[i].w == dp1[now])
{
f[v] = max(dp1[v], dp2[now] + e[i].w);
tp = max(dp2[now], fro);
}
else
{
f[v] = max(dp1[v], dp1[now] + e[i].w);
tp = max(dp1[now], fro);
}
f[v] = max(f[v], tp + e[i].w);
dfs2(v, now, tp + e[i].w);
}
}
int main()
{
Mem(head, -1);
n = read();
for(int i = 1; i < n; ++i)
{
int x = read(), y = read(), w = read();
t[i] = (Node){x, y, w};
addEdge(x, y, w), addEdge(y, x, w);
}
int ans = INF;
for(int i = 1; i < n; ++i)
{
dia_Max = 0;
dfs(t[i].x, t[i].y, 0), dfs(t[i].y, t[i].x, 1);
f[t[i].x] = dp1[t[i].x], f[t[i].y] = dp1[t[i].y];
dfs2(t[i].x, t[i].y, 0), dfs2(t[i].y, t[i].x, 0);
int pos1 = t[i].x, pos2 = t[i].y;
for(int j = 1; j <= n; ++j)
{
if(!col[j] && f[j] < f[pos1]) pos1 = j;
if(col[j] && f[j] < f[pos2]) pos2 = j;
}
ans = min(ans, max(dia_Max, f[pos1] + f[pos2] + t[i].w));
}
write(ans), enter;
return 0;
}
[TJOI2017]城市的更多相关文章
- 【BZOJ4890】[TJOI2017]城市(动态规划)
[BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...
- [洛谷P3761] [TJOI2017]城市
洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- bzoj4890[Tjoi2017]城市(树的半径)
4890: [Tjoi2017]城市 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 149 Solved: 91[Submit][Status][D ...
- [TJOI2017]城市(树的直径)
[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达, ...
- [BZOJ4890][TJOI2017]城市(DP)
题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...
- BZOJ4890 & 洛谷3761:[TJOI2017]城市——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4890 https://www.luogu.org/problemnew/show/P3761 从加 ...
- [TJOI2017]城市 【树的直径+暴力+优化】
Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...
- luogu P3761 [TJOI2017]城市 树的直径 bfs
LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...
随机推荐
- Hibernate入门(九)级联删除
Hibernate级联删除 上一篇文章学习了级联保存和更新,这个级联删除应该很好理解的.一样的道理,删除一方,同时删除有关联的一方. https://www.cnblogs.com/deepSleep ...
- 当前主流电脑的BIOS调出键
[组装电脑主板] 主板品牌 启动按键 华硕主板 F8 技嘉主板 F12 微星主板 F11 映泰主板 F9 梅捷主板 ESC或F12 七彩虹主板 ESC或F11 华擎主板 F11 斯巴达 ...
- couldn't resolve host api.weixin.qq.com
1.代理服务器突然出现 couldn't resolve host api.weixin.qq.com 不知原因 2.重启nginx无效-----代码肯定没有动过(之前出现过,过了一天恢复) 3.防火 ...
- 2018-08-22 为中文API的简繁转换库添加迟到的持续集成
前两天在V2EX偶遇反馈帖第一次见以汉字命名的 Java 类 - V2EX, 于是复习了一下半年多没碰的项目program-in-chinese/zhconverter. 前文介绍了发布过程: 在Ma ...
- leetcode-69.x的平方根
leetcode-69.x的平方根 Points 二分查找 牛顿迭代 题意 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保 ...
- 转载:python生成以及打开json、csv和txt文件
原文地址:https://blog.csdn.net/weixin_42555131/article/details/82012642 生成txt文件: mesg = "hello worl ...
- java数据结构 • 面向对象 • 异常 • 随机数·时间
• 语法基础 • 控制流 • 数据结构 • 面向对象 • 异常 • 随机数 //String常用的方法: indexOf charAt charAt codePointAt compa ...
- C#面向对象 类
; i < ; i++) { student.b++;//静态字段若不赋值,默认为1: new student().a++;//引用类型变量定义后,必须使用new关键字创建对象 才能后才能使用 ...
- mssql sqlserver xml数据类型专题
摘要: 下文将详细讲述sql server xml数据类型的相关知识,如下所示: 实验环境: sql server 2008 R2 xml数据类型简介: mssql sqlserver xml数据类型 ...
- SQLSERVER查询数据库死锁的存储过程
USE [IdentityDemo] GO /****** Object: StoredProcedure [dbo].[sp_who_lock] Script Date: 2019/1/17 10: ...