感觉自己的复杂度感人

大概是\(O(p*\pi(m)+p^3logn)\)

还是能过去的

我们看到这么大的数据范围还是应该先想一想暴力怎么写

显然我们可以直接暴力\(dp\)

设\(dp[i][j]\)表示已经选择了\(i\)数,其中所有数的和\(mod\ p\)为\(j\)的方案数

显然方程是

\[f[i][j]=\sum_{k=1}^mdp[i-1][((j-k)\%p+p)\%p]
\]

初始的状态是\(dp[0][0]=1\),最终的答案是\(dp[n][0]\)

至于还有一个至少有一个素数的限制条件,我们可以先不管这个条件直接算一遍,之后再保证\(k\)不为素数再算一遍,两个一减就是答案了

这样暴力转移的复杂度是\(O(nmp)\)的,于是我们要考虑优化

这个转移相当的固定,于是可以矩乘优化

我们发现因为\(p\)非常的小,于是那个膜\(p\)意义下的转移会有很多重复的位置被转移过去,于是我们如果可以预处理出这样一个数组\(tot[j][k]\)

表示\(dp[i-1][k]\)会向\(dp[i][k]\)专一多少次,也就是\(dp[i][k]+=dp[i-1][j]*tot[j][k]\)

于是就有这样一个矩阵会被构造出来

(\(p=3\)的情况)

于是就可以转移了,至于\(tot[j][k]\)怎么求,这个就是很简单了

在没有素数的情况下把所有素数对应的转移减一遍就好了

代码

#include<iostream>
#include<cstring>
#include<bitset>
#include<cstdio>
#define re register
#define maxn 20000005
#define LL long long
const LL mod=20170408;
std::bitset<maxn> f;
int prime[1500000];
LL ans[101][101],a[101][101];
int m,p;
LL n;
inline void did_a()
{
LL mid[101][101];
for(re int i=1;i<=p;i++)
for(re int j=1;j<=p;j++)
mid[i][j]=a[i][j],a[i][j]=0;
for(re int i=1;i<=p;i++)
for(re int j=1;j<=p;j++)
for(re int k=1;k<=p;k++)
a[i][j]=(a[i][j]+(mid[i][k]*mid[k][j])%mod)%mod;
}
inline void did_ans()
{
LL mid[101][101];
for(re int i=1;i<=p;i++)
for(re int j=1;j<=p;j++)
mid[i][j]=ans[i][j],ans[i][j]=0;
for(re int i=1;i<=p;i++)
for(re int j=1;j<=p;j++)
for(re int k=1;k<=p;k++)
ans[i][j]=(ans[i][j]+(mid[i][k]*a[k][j])%mod)%mod;
}
inline void Rebuild()
{
memset(ans,0,sizeof(ans));
memset(a,0,sizeof(a));
for(re int i=1;i<=p;i++)
ans[i][i]=1;
int t=m/p;
for(re int i=1;i<=p;i++)
for(re int j=1;j<=p;j++)
a[i][j]=t;
int tot=m%p;
for(re int i=1;i<=p;i++)
{
int cnt=tot,x=i-1;
if(!x) x=p;
while(cnt)
{
a[i][x]++,cnt--;
x--;
if(!x) x=p;
}
}
}
inline void out()
{
for(re int i=1;i<=p;i++)
{
for(re int j=1;j<=p;j++)
printf("%d ",a[i][j]);
putchar(10);
}
}
inline void quick(LL b)
{
while(b)
{
if(b&1ll) did_ans();
b>>=1ll;
did_a();
}
}
int main()
{
scanf("%lld%d%d",&n,&m,&p);
f[1]=1;
for(re int i=2;i<=m;i++)
{
if(!f[i]) prime[++prime[0]]=i;
for(re int j=1;j<=prime[0]&&prime[j]*i<=m;j++)
{
f[prime[j]*i]=i;
if(i%prime[j]==0) break;
}
}
Rebuild();
quick(n);
LL num=ans[1][1];
Rebuild();
for(re int i=1;i<=p;i++)
{
for(re int j=1;j<=prime[0];j++)
{
a[i][((i-1-prime[j])%p+p)%p+1]--;
if(a[i][(i-prime[j]+p)%p+1]<0) a[i][(i-prime[j]+p)%p+1]=mod-1;
}
}
quick(n);
std::cout<<(num-ans[1][1]+mod)%mod;
return 0;
}

【[SDOI2017]序列计数】的更多相关文章

  1. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  2. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  3. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  4. P3702 [SDOI2017]序列计数

    P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...

  5. 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法

    [BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...

  6. BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*

    BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...

  7. [BZOJ4818][SDOI2017]序列计数(动规+快速幂)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 972  Solved: 581[Submit][Status ...

  8. [bzoj4818][Sdoi2017]序列计数_矩阵乘法_欧拉筛

    [Sdoi2017]序列计数 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818. 题解: 首先列出来一个递推式子 $f[i][0]$ ...

  9. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  10. bzoj4818 [Sdoi2017]序列计数

    Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望,这n个数中,至少有一个数是质数.Alice想知道,有多少个序 ...

随机推荐

  1. java.sql.SQLException: Io 异常: Invalid number format for port number

    java.sql.SQLException: Io 异常: Invalid number format for port number   jdbc数据库链接配置没有写端口号 ​ 要检查jdbc的配置 ...

  2. 【SSH网上商城项目实战08】查询和删除商品类别功能的实现

    转自:https://blog.csdn.net/eson_15/article/details/51338991 上一节我们完成了使用DataGrid显示所有商品信息,这节我们开始添加几个功能:添加 ...

  3. InfluxDB 的卸载与重装

    我是通过下面方式安装的,所以卸载也是用的 rpm 的卸载命令 wget http://s3.amazonaws.com/influxdb/influxdb-latest-1.x86_64.rpm su ...

  4. data-id 和 id 的区别

    作者:Zeropoint零点 来源:CSDN 原文:https://blog.csdn.net/qq_41648132/article/details/80364335 版权声明:本文为Zeropoi ...

  5. FormData js对象的介绍和使用

    FormData js对象的介绍和使用 FormData对象,可以把所有表单元素的name与value组成一个queryString,提交到后台. 在使用ajax提交时,使用FormData对象可以减 ...

  6. <Android 基础(二十四)> EditText

    介绍 A text field allows the user to type text into your app. It can be either single line or multi-li ...

  7. SpringBoot 整合 Mybatis + Mysql——XML配置方式

    一.介绍 SpringBoot有两种方法与数据库建立连接,一种是集成Mybatis,另一种用JdbcTemplate,本文主要讨论集成Mybatis方式. SpringBoot整合Mybatis也有两 ...

  8. 基于PMBOK的项目管理知识体系

  9. CPU硬件辅助虚拟化技术

    目前主要有Intel的VT-x和AMD的AMD-V这两种技术.其核心思想都是通过引入新的指令和运行模式,使VMM和Guest OS分别运行在不同模式(ROOT模式和非ROOT模式)下,且Guest O ...

  10. MyBatis基本配置和实践(五)

    第一步:创建一个Maven工程 第二步:编辑Maven工程的pom.xml,引入mybatis-generator-maven-plugin <?xml version="1.0&qu ...