LOJ#162. 快速幂 2(分块)
题面
题解
orzljz
我们分块,设\(s=\sqrt{p}+1\),那么\(x^a\)可以拆成\((x^s)^{a/s}\)和\(x^{a\bmod s}\),\(O(s)\)预处理,\(O(1)\)计算就可以了
//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=50005,P=998244352;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int bin[N],bs[N],n,x,s,a;
int main(){
// freopen("testdata.in","r",stdin);
x=read(),n=read(),s=sqrt(P)+1;
bin[0]=1;fp(i,1,s)bin[i]=mul(bin[i-1],x);
bs[0]=1;fp(i,1,s)bs[i]=mul(bs[i-1],bin[s]);
while(n--)a=read(),print(mul(bs[a/s],bin[a%s]));
return Ot(),0;
}
LOJ#162. 快速幂 2(分块)的更多相关文章
- HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门 原题目描述在最下面. Solution ...
- HDU6395 Sequence(矩阵快速幂+数论分块)
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...
- 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)
Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...
- [LOJ#162]模板题-快速幂2
<题目链接> 注意:这可能也是一道模板题. 注意2:$p=998224352$ 注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$ 这个题很启发思路,如果直接快速 ...
- hdu6395 (矩阵快速幂+分块)
Online Judge Online Exercise Online Teaching Online Contests Exercise Author F.A.Q Hand In Hand Onli ...
- hdu 6395Sequence【矩阵快速幂】【分块】
Sequence Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total ...
- HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)
Sequence Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- [hdu-6395]Sequence 分块+矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时 加的下取整的数随 ...
- HDU - 6395 Sequence (整除分块+矩阵快速幂)
定义数列: $\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_ ...
随机推荐
- Win7删除远程连接历史记录
打开注册表,找到 HKEY_CURRENT_USER\Software\Microsoft\Terminal Server Client\Default 删除右侧的 MRUn(n是索引号) 项 即可.
- 浅探SpringMVC中HandlerExecutionChain之handler、interceptor
讲解HandlerExecutionChain之前,先大致了解下SpringMVC的核心开发步骤: 在web.xml中部署DispaterServlet,并配置springmvc.xml等文件; 将映 ...
- LIst和table的转换
public static class DataTableExtensions { /// <summary> /// 转化一个DataTable /// </summary> ...
- 安装wampserver后,在www文件夹下面写php文件,而在网页里输入localhost而无法打开php文件时解决办法汇总
wampserver安装后,在www文件夹下面写入xx.PHP文件,然后在网页里输入localhost:xx.PHP. 你可能会遇到如下三种情况: 情形一:网页上显示空白,按F12,出现404的错误. ...
- 进入docker的4种方式
在使用Docker创建了容器之后,大家比较关心的就是如何进入该容器了,其实进入Docker容器有好几多种方式,这里我们就讲一下常用的几种进入Docker容器的方法. 进入Docker容器比较常见的几种 ...
- UVa 1616 Caravan Robbers (二分+贪心)
题意:给定 n 个区间,然后把它们变成等长的,并且不相交,问最大长度. 析:首先是二分最大长度,这个地方精度卡的太厉害了,都卡到1e-9了,平时一般的1e-8就行,二分后判断是不是满足不相交,找出最长 ...
- dojo表格操作的简单示例(建立表格)
代码示例: <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w ...
- 解决linux下tomcat停止进程任存在问题
解决linux下tomcat停止进程任存在问题 在Linux下(之所以强调linux下,是因为在windows下正常),执行tomcat ./shutdown.sh 后,虽然tomcat服务不能正常访 ...
- 洛谷P4312 [COCI 2009] OTOCI / 极地旅行社(link-cut-tree)
题目描述 不久之前,Mirko建立了一个旅行社,名叫“极地之梦”.这家旅行社在北极附近购买了N座冰岛,并且提供观光服务. 当地最受欢迎的当然是帝企鹅了,这些小家伙经常成群结队的游走在各个冰岛之间.Mi ...
- c#格式化字符
1.格式化货币(跟系统的环境有关,中文系统默认格式化人民币,英文系统格式化美元) string.Format("{0:C}",0.2) 结果为:¥0.20 (英文操作系统结果:$0 ...