思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点。

1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值。

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_points=1000
vectors_set=[]
for i in range(num_points):
x1=np.random.normal(0.0,0.55) #横坐标,进行随机高斯处理化,以0为均值,以0.55为标准差
y1=x1*0.1+0.3+np.random.normal(0.0,0.03) #纵坐标,数据点在y1=x1*0.1+0.3上小范围浮动
vectors_set.append([x1,y1])
x_data=[v[0] for v in vectors_set]
y_data=[v[1] for v in vectors_set]
plt.scatter(x_data,y_data,c='r')
plt.show()

构造数据如下图

2)构造线性回归模型,学习上面数据图是符合一个怎么样的W和b

    W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')  # 生成1维的W矩阵,取值是[-1,1]之间的随机数
b = tf.Variable(tf.zeros([1]), name='b') # 生成1维的b矩阵,初始值是0
y = W * x_data + b # 经过计算得出预估值y
loss = tf.reduce_mean(tf.square(y - y_data), name='loss') # 以预估值y和实际值y_data之间的均方误差作为损失
optimizer = tf.train.GradientDescentOptimizer(0.5) # 采用梯度下降法来优化参数 学习率为0.5
train = optimizer.minimize(loss, name='train') # 训练的过程就是最小化这个误差值
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 初始化的W和b是多少
for step in range(20): # 执行20次训练
sess.run(train)
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 输出训练好的W和b

打印每一次结果,如下图,随着迭代进行,训练的W、b越来越接近0.1、0.3,说明构建的回归模型确实学习到了之间建立的数据的规则。loss一开始很大,后来慢慢变小,说明模型表达效果随着迭代越来越好。

W = [-0.9676645] b = [0.] loss = 0.45196822

W = [-0.6281831] b = [0.29385352] loss = 0.17074569

W = [-0.39535886] b = [0.29584622] loss = 0.07962803

W = [-0.23685378] b = [0.2972129] loss = 0.03739688

W = [-0.12894464] b = [0.2981433] loss = 0.017823622

W = [-0.05548081] b = [0.29877672] loss = 0.008751821

W = [-0.00546716] b = [0.29920793] loss = 0.0045472304

W = [0.02858179] b = [0.2995015] loss = 0.0025984894

W = [0.05176209] b = [0.29970136] loss = 0.0016952885

W = [0.06754307] b = [0.29983744] loss = 0.0012766734

W = [0.07828666] b = [0.29993007] loss = 0.001082654

W = [0.08560082] b = [0.29999313] loss = 0.0009927301

W = [0.09058025] b = [0.30003607] loss = 0.0009510521

W = [0.09397022] b = [0.30006528] loss = 0.00093173544

W = [0.09627808] b = [0.3000852] loss = 0.00092278246

W = [0.09784925] b = [0.30009875] loss = 0.000918633

W = [0.09891889] b = [0.30010796] loss = 0.00091670983

W = [0.0996471] b = [0.30011424] loss = 0.0009158184

W = [0.10014286] b = [0.3001185] loss = 0.00091540517

W = [0.10048037] b = [0.30012143] loss = 0.0009152137

W = [0.10071015] b = [0.3001234] loss = 0.0009151251

注:以上内容为我学习唐宇迪老师的Tensorflow课程所做的笔记

用Tensorflow完成简单的线性回归模型的更多相关文章

  1. tensorflow入门(1):构造线性回归模型

    今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = ...

  2. [tensorflow] 线性回归模型实现

    在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...

  3. PRML读书笔记——线性回归模型(上)

    本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...

  4. TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化

    线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...

  5. 【学习笔记】tensorflow实现一个简单的线性回归

    目录 准备知识 Tensorflow运算API 梯度下降API 简单的线性回归的实现 建立事件文件 变量作用域 增加变量显示 模型的保存与加载 自定义命令行参数 准备知识 Tensorflow运算AP ...

  6. 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归

    一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...

  7. TensorFlow从0到1之TensorFlow实现简单线性回归(15)

    本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/bos ...

  8. 线性回归模型的 MXNet 与 TensorFlow 实现

    本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-l ...

  9. TensorFlow简要教程及线性回归算法示例

    TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...

随机推荐

  1. ssh框架错误:org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role。

    在做ssh项目练习的时候出现问题: org.hibernate.LazyInitializationException: failed to lazily initialize a collectio ...

  2. iOS 封装一个带复制功能的UILabel

    我们发现UILabel不在为我们提供长按弹出复制等操作了, 我们来继承UILabel自己写一个带复制功能的UILabel. 代码: #import "CopyLabel.h" @i ...

  3. TCP|UDP|Http|Socket

    TCP_IP.Http.Socket的区别 - 计算机网络知识库 iOS-Socket网络通信-框架与API - 简书 CocoaAsyncSocket + Protobuf 处理粘包和拆包问题 - ...

  4. 聊聊编程开发的数据库批量插入(sql)

    这里的批量插入,主要是支持SQL的大型存储数据库,本文以Mysql,Oracle,SqlServer,postgresql4类来说明,这大概是国内应用比较多的了.其余的应该可以按照这些去找.提到编程的 ...

  5. SessionStroage和locationStorage的思考

    从理论上讲 LocalStroage 内存更大,存储时间更为持久,作用域更大.那么SessionStroage有存在的必要吗?有什么样的应该场景是必须用seessionStroage 而不能使用Loc ...

  6. 【七】ab压测

    [任务7]ab压测 安装ab压测软件 命令:yum -y install httpd-tools 进行压力测试: 执行命令:ab -c 20 -n 5000 http://192.168.159.30 ...

  7. sqoop import/export使用经验

    一.先创建一个小表(test_01)进行测试(主节点IP:169.254.109.130/oracle服务器IP:169.254.109.100) 1.测试连接oracle; sqoop list-t ...

  8. python list内部功能记录

    list.append(obj) 在列表末尾添加新的对象 list.count(obj) 统计某个元素在列表中出现的次数 list.extend(seq) 在列表末尾一次性追加另一个序列中的多个值(用 ...

  9. Python爬虫系列 - 初探:爬取旅游评论

    Python爬虫目前是基于requests包,下面是该包的文档,查一些资料还是比较方便. http://docs.python-requests.org/en/master/ POST发送内容格式 爬 ...

  10. C#基础 const和readonly关键字

    静态常量 所谓静态常量就是在编译期间会对变量进行解析,再将常量的值替换成初始化的值.动态常量 所谓动态常量就是编译期间会将变量标记只读常量,而不用常量的值代替,这样在声明时可以不初始化,可以延迟到构造 ...