Link of the Paper: https://arxiv.org/abs/1411.4389

Main Points:

  1. A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep.
  2. The recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations.

Other Key Points:

  1. A significant limitation of simple RNN models which strictly integrate state information over time is known as the "vanishing gradient" effect: the ability to backpropogate an error signal through a long-range temporal interval becomes increasingly impossible in practice.
  2. The authors show LSTM-type models provide for improved recognition on conventional video activity challenges and enable a novel end-to-end optimizable mapping from image pixels to sentence-level natural language descriptions.

Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )的更多相关文章

  1. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  2. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  3. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  4. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  5. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  6. SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解

    论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...

  7. 论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    背景 用ConvNet方法解决图像分类.检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息.论文作者发明了SPP pooling ...

  8. SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)

    1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...

  9. 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos

    Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...

随机推荐

  1. 菜鸟程序猿之IDEA快捷键

    Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Shift+Click,可以关闭文件Ctrl+[ ...

  2. 2019年,iOS开发的你不可或缺的进阶之路!

    序言 我相信很多人都在说,iOS行业不好了,iOS现在行情越来越难了,失业的人比找工作的人还要多.失业即相当于转行,跳槽即相当于降低自己的身价.那么做iOS开发的你,你是否在时刻准备着跳槽或者转行了. ...

  3. [iOS]AVSpeechSynthesizer语音合成

    #import <AVFoundation/AVFoundation.h> // 初始化方法 AVSpeechSynthesizer *speech = [[AVSpeechSynthes ...

  4. [iOS]app的生命周期

    对于iOS应用程序,关键的是要知道你的应用程序是否正在前台或后台运行.由于系统资源在iOS设备上较为有限,一个应用程序必须在后台与前台有不同的行为.操作系统也会限制你的应用程序在后台的运行,以提高电池 ...

  5. iOS之在本地搭建IPv6环境测试你的app

    IPv6的简介 IPv4 和 IPv6的区别就是 IP 地址前者是 .(dot)分割,后者是以 :(冒号)分割的(更多详细信息自行搜索). PS:在使用 IPv6 的热点时候,记得手机开 飞行模式 哦 ...

  6. node 借助Node Binary管理模块“n”更新

    Node.js的版本频繁变化,如果有模块不能在你当前的Node版本上使用,需要升级Node环境 1)首先:查看当前node版本:node –v 2)安装n模块:npm install -g n 3)检 ...

  7. Delphi Firemonkey在主线程 异步调用函数(延迟调用)

    先看下面的FMX.Layouts.pas中一段代码 procedure TCustomScrollBox.MouseDown(Button: TMouseButton; Shift: TShiftSt ...

  8. BurpSuite—-Repeater模块(中继器)

    一.简介 Burp Repeater 是一个手动修改并补发个别 HTTP 请求,并分析他们的响应的工具.它最大的用途就是和其他 Burp Suite 工具结合起来.你可以从目标站点地图,从 Burp ...

  9. <c:out />的理解

    <c:out value="<string>" default="<string>" escapeXml="<tr ...

  10. 20155318 《Java程序设计》实验五 (网络编程与安全)实验报告

    20155318 <Java程序设计>实验五 (网络编程与安全)实验报告 实验内容 了解计算机网络基础 掌握Java Socket编程 理解混合密码系统 掌握Java 密码技术相关API的 ...