Link of the Paper: https://arxiv.org/abs/1411.4389

Main Points:

  1. A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep.
  2. The recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations.

Other Key Points:

  1. A significant limitation of simple RNN models which strictly integrate state information over time is known as the "vanishing gradient" effect: the ability to backpropogate an error signal through a long-range temporal interval becomes increasingly impossible in practice.
  2. The authors show LSTM-type models provide for improved recognition on conventional video activity challenges and enable a novel end-to-end optimizable mapping from image pixels to sentence-level natural language descriptions.

Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )的更多相关文章

  1. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  2. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  3. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  4. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  5. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  6. SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解

    论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...

  7. 论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    背景 用ConvNet方法解决图像分类.检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息.论文作者发明了SPP pooling ...

  8. SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)

    1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...

  9. 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos

    Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...

随机推荐

  1. Linux-- 目录基本操作(2)

    cp 复制文件或目录 用法:cp [OPTION] SOURCE源文件 DIRECTORY目标文件,具体可以查看 man cp 以常用的参数举例 [root@hs-192-168-33-206 tom ...

  2. Machine Learning In Action

    The mind-road of "Machine Learning In Action". Read though the book totally by English!!

  3. SSM(SpringMVC+Spring+Mybatis)框架学习理解

    近期做到的项目中,用到的框架是SSM(SpringMVC+Spring+Mybatis).之前比较常见的是SSH.用到了自然得了解各部分的分工 spring mvc 是spring 处理web层请求的 ...

  4. Extjs6 怎么重写框架的类

    创建一个覆写(override)类的推荐方法如下: Ext.define('MyApp.overrides.panel.Panel', { override: 'Ext.panel.Panel', c ...

  5. yyy loves Maths VII(状压DP)

    题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 一群同学在和yyy玩一个游戏 每次,他们会给yyy ...

  6. Ubuntu SSH登陆出现Access Denied错误

    在/etc/ssh/sshd_config 中有个 PermitRootLogin, 改成“PermitRootLogin yes”就可以了 重启ssh: /etc/init.d/ssh restar ...

  7. fail2ban 防暴力破解总结

    公司服务器安全问题一直是个令人头疼的问题,许多运维的小伙伴一直在用脚本来监控服务器登录状态,然而脚本编写比较麻烦,今天就给大家推荐一款小而精致的防暴力破解工具 fail2ban ,他可以监控系统日志, ...

  8. Flume(3)-安装部署

    一. 下载 Flume官网地址 http://flume.apache.org/ 文档查看地址 http://flume.apache.org/FlumeUserGuide.html 下载地址 htt ...

  9. C# 对DataTable的简单操作

    //更改列名 dt.Columns["原来的列名"].ColumnName="新的列名"; //移除列 dt.Columns.Remove("列名&q ...

  10. PMP考试通过

    经过3个月的努力,终于在10月8号,过完国庆假期,得知考试通过.虽然没有得到5A,只有4A,心也算落下了.备考的过程中,通过学习小组讨论,互相交流,辅导. 自己也对学习的知识加深印象.总结一下整个学习 ...