Link of the Paper: https://arxiv.org/abs/1411.4389

Main Points:

  1. A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep.
  2. The recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations.

Other Key Points:

  1. A significant limitation of simple RNN models which strictly integrate state information over time is known as the "vanishing gradient" effect: the ability to backpropogate an error signal through a long-range temporal interval becomes increasingly impossible in practice.
  2. The authors show LSTM-type models provide for improved recognition on conventional video activity challenges and enable a novel end-to-end optimizable mapping from image pixels to sentence-level natural language descriptions.

Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )的更多相关文章

  1. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  2. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  3. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  4. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  5. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  6. SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解

    论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...

  7. 论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    背景 用ConvNet方法解决图像分类.检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息.论文作者发明了SPP pooling ...

  8. SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)

    1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...

  9. 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos

    Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...

随机推荐

  1. Java中的集合和常用类

    Java中的常用类: ▪ Object类 ▪ Math类 ▪ String类和StringBuffer类(字符串) ▪ 8种基本类型所对应的包装类 ▪ java.util包中的类——Date类 Obj ...

  2. ORACLE逐行累计求和方法(OVER函数)

    1.RANK ( ) OVER ( [QUERY_PARTITION_CLAUSE] ORDER_BY_CLAUSE ) DENSE_RANK ( ) OVER ( [QUERY_PARTITION_ ...

  3. Request和Response中文乱码问题的解决方案和区分

    首先,在刚接触这个中文乱码问题的时候,还是比较混乱的,因为针对request和response各自都有自己的解决方案,而且思路相似,方法也很相似,又针对get和post两种提交方式,分两种解决中文乱码 ...

  4. 『ACM C++』 PTA 天梯赛练习集L1 | 027-028

    死亡周二,今天去看惊奇队长了!!!真的很佩服国外的后期特效大片技术,要是我们国内也能实现这样的技术能力就好了~ 羡慕max -------------------------------------- ...

  5. mysql面试常见题目

    第一题 某班学生和考试成绩信息如下表Student所示: Student表 ID SName Mark 1 Jack 90 2 Marry 96 3 Rose 88 4 Bob 86 5 John 8 ...

  6. Mysql-常用数据的基本操作和基本形式

    一 .介绍 二 .插入数据INSERT 三 .更新数据UPDATE 四 .删除数据DELETE 五 .查询数据SELECT 六 .权限管理 一. 介绍 MySQL数据操作: DML ========= ...

  7. python3 class类 练习题

    """一.定义一个学生Student类.有下面的类属性:1 姓名 name2 年龄 age3 成绩 score(语文,数学,英语) [每课成绩的类型为整数] 类方法:1 ...

  8. 轻松解决U盘加密问题

    很多小伙伴常常会遇到这样的问题,比如说有朋友或者同事想借用你的u盘,处于人情世故你又不得不借,但是又不喜欢自己的文件被别人看到或者担心丢失或被修改,在此提供一种给u盘加密或者给u盘里的文件加密的方法. ...

  9. 回文词 (Palindromes,Uva401)

    例题 3-3 回文词 (Palindromes,Uva401) 输入一个字符中,判断它是否为回文串以及镜像串.输入字符串保证不含数字0.所谓回文串,就是反转以后和原串相同,如abba和madam.所有 ...

  10. 柱体内温度分布图 MATLAB

    对于下底面和侧面绝热,上底面温度与半径平方成正比的柱体,绘制柱体内温度分布图. 这里给出两种尝试:1.散点图:2.切片云图 1. 散点图仿真 首先使用解析算法求的场解值的解析表达,其次求解Bessel ...