问题导读:
1、什么是yarn?
2、Yarn 和MapReduce相比,它有什么特殊作用 ?

背景

Yarn是一个分布式的资源管理系统,用以提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer们还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer们决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有更好的扩展性、可用性、可靠性、向后兼容性和更高的资源利用率以及能支持除了MapReduce计算框架外的更多的计算框架。

原MapReduce框架的不足

  • JobTracker是集群事务的集中处理点,存在单点故障
  • JobTracker需要完成的任务太多,既要维护job的状态又要维护job的task的状态,造成过多的资源消耗
  • 在taskTracker端,用map/reduce task作为资源的表示过于简单,没有考虑到CPU、内存等资源情况,当把两个需要消耗大内存的task调度到一起,很容易出现OOM
  • 把资源强制划分为map/reduce slot,当只有map task时,reduce slot不能用;当只有reduce task时,map slot不能用,容易造成资源利用不足。

Yarn架构

Yarn/MRv2最基本的想法是将原JobTracker主要的资源管理和job调度/监视功能分开作为两个单独的守护进程。有一个全局的ResourceManager(RM)和每个Application有一个ApplicationMaster(AM),Application相当于map-reduce job或者DAG jobs。ResourceManager和NodeManager(NM)组成了基本的数据计算框架。ResourceManager协调集群的资源利用,任何client或者运行着的applicatitonMaster想要运行job或者task都得向RM申请一定的资源。ApplicatonMaster是一个框架特殊的库,对于MapReduce框架而言有它自己的AM实现,用户也可以实现自己的AM,在运行的时候,AM会与NM一起来启动和监视tasks。

ResourceManager

ResourceManager作为资源的协调者有两个主要的组件:Scheduler和ApplicationsManager(AsM)。

Scheduler负责分配最少但满足application运行所需的资源量给Application。Scheduler只是基于资源的使用情况进行调度,并不负责监视/跟踪application的状态,当然也不会处理失败的task。RM使用resource container概念来管理集群的资源,resource container是资源的抽象,每个container包括一定的内存、IO、网络等资源,不过目前的实现只包括内存一种资源。

ApplicationsManager负责处理client提交的job以及协商第一个container以供applicationMaster运行,并且在applicationMaster失败的时候会重新启动applicationMaster。下面阐述RM具体完成的一些功能。

  1. 资源调度:Scheduler从所有运行着的application收到资源请求后构建一个全局的资源分配计划,然后根据application特殊的限制以及全局的一些限制条件分配资源。
  2. 资源监视:Scheduler会周期性的接收来自NM的资源使用率的监控信息,另外applicationMaster可以从Scheduler得到属于它的已完成的container的状态信息。
  3. Application提交:
    • client向AsM获得一个applicationIDclient将application定义以及需要的jar包
    • client将application定义以及需要的jar包文件等上传到hdfs的指定目录,由yarn-site.xml的yarn.app.mapreduce.am.staging-dir指定
    • client构造资源请求的对象以及application的提交上下文发送给AsM
    • AsM接收application的提交上下文
    • AsM根据application的信息向Scheduler协商一个Container供applicationMaster运行,然后启动applicationMaster
    • 向该container所属的NM发送launchContainer信息启动该container,也即启动applicationMaster、AsM向client提供运行着的AM的状态信息。
  4. AM的生命周期:AsM负责系统中所有AM的生命周期的管理。AsM负责AM的启动,当AM启动后,AM会周期性的向AsM发送heartbeat,默认是1s,AsM据此了解AM的存活情况,并且在AM失败时负责重启AM,若是一定时间过后(默认10分钟)没有收到AM的heartbeat,AsM就认为该AM失败了。

关于ResourceManager的可用性目前还没有很好的实现,不过Cloudera公司的CDH4.4以后的版本实现了一个简单的高可用性,使用了Hadoop-common项目中HA部分的代码,采用了类似hdfs namenode高可用性的设计,给RM引入了active和standby状态,不过没有与journalnode相对应的角色,只是由zookeeper来负责维护RM的状态,这样的设计只是一个最简单的方案,避免了手动重启RM,离真正的生产可用还有一段距离。

NodeManager

NM主要负责启动RM分配给AM的container以及代表AM的container,并且会监视container的运行情况。在启动container的时候,NM会设置一些必要的环境变量以及将container运行所需的jar包、文件等从hdfs下载到本地,也就是所谓的资源本地化;当所有准备工作做好后,才会启动代表该container的脚本将程序启动起来。启动起来后,NM会周期性的监视该container运行占用的资源情况,若是超过了该container所声明的资源量,则会kill掉该container所代表的进程。

另外,NM还提供了一个简单的服务以管理它所在机器的本地目录。Applications可以继续访问本地目录即使那台机器上已经没有了属于它的container在运行。例如,Map-Reduce应用程序使用这个服务存储map output并且shuffle它们给相应的reduce task。

在NM上还可以扩展自己的服务,yarn提供了一个yarn.nodemanager.aux-services的配置项,通过该配置,用户可以自定义一些服务,例如Map-Reduce的shuffle功能就是采用这种方式实现的。

NM在本地为每个运行着的application生成如下的目录结构:

Container目录下的目录结构如下:

在启动一个container的时候,NM就执行该container的default_container_executor.sh,该脚本内部会执行launch_container.sh。launch_container.sh会先设置一些环境变量,最后启动执行程序的命令。对于MapReduce而言,启动AM就执行org.apache.hadoop.mapreduce.v2.app.MRAppMaster;启动map/reduce task就执行org.apache.hadoop.mapred.YarnChild。

ApplicationMaster

ApplicationMaster是一个框架特殊的库,对于Map-Reduce计算模型而言有它自己的ApplicationMaster实现,对于其他的想要运行在yarn上的计算模型而言,必须得实现针对该计算模型的ApplicationMaster用以向RM申请资源运行task,比如运行在yarn上的spark框架也有对应的ApplicationMaster实现,归根结底,yarn是一个资源管理的框架,并不是一个计算框架,要想在yarn上运行应用程序,还得有特定的计算框架的实现。由于yarn是伴随着MRv2一起出现的,所以下面简要概述MRv2在yarn上的运行流程。

MRv2运行流程:

  1. MR JobClient向resourceManager(AsM)提交一个job
  2. AsM向Scheduler请求一个供MR AM运行的container,然后启动它
  3. MR AM启动起来后向AsM注册
  4. MR JobClient向AsM获取到MR AM相关的信息,然后直接与MR AM进行通信
  5. MR AM计算splits并为所有的map构造资源请求
  6. MR AM做一些必要的MR OutputCommitter的准备工作
  7. MR AM向RM(Scheduler)发起资源请求,得到一组供map/reduce task运行的container,然后与NM一起对每一个container执行一些必要的任务,包括资源本地化等
  8. MR AM 监视运行着的task 直到完成,当task失败时,申请新的container运行失败的task
  9. 当每个map/reduce task完成后,MR AM运行MR OutputCommitter的cleanup 代码,也就是进行一些收尾工作
  10. 当所有的map/reduce完成后,MR AM运行OutputCommitter的必要的job commit或者abort APIs
  11. MR AM退出。

在Yarn上写应用程序

在yarn上写应用程序并不同于我们熟知的MapReduce应用程序,必须牢记yarn只是一个资源管理的框架,并不是一个计算框架,计算框架可以运行在yarn上。我们所能做的就是向RM申请container,然后配合NM一起来启动container。就像MRv2一样,jobclient请求用于MR AM运行的container,设置环境变量和启动命令,然后交由NM去启动MR AM,随后map/reduce task就由MR AM全权负责,当然task的启动也是由MR AM向RM申请container,然后配合NM一起来启动的。所以要想在yarn上运行非特定计算框架的程序,我们就得实现自己的client和applicationMaster。另外我们自定义的AM需要放在各个NM的classpath下,因为AM可能运行在任何NM所在的机器上。

Hadoop2的Yarn和MapReduce2相关的更多相关文章

  1. 【hadoop2.2(yarn)】基于yarn成功执行分布式map-reduce,记录问题解决过程。

    hadoop2.x改进了hadoop1.x的架构, 具体yarn如何工作以及改进了什么可以在网上学, 这里仅记录我个人搭建的问题和理解,希望能帮助遇到困难的朋友. 在开始前,必须了解yarn版本的ma ...

  2. Hadoop2 使用 YARN 运行 MapReduce 的过程源码分析

    Hadoop 使用 YARN 运行 MapReduce 的过程如下图所示: 总共分为11步. 这里以 WordCount 为例, 我们在客户端终端提交作业: # 把本地的 /home/hadoop/t ...

  3. Hadoop2.0/YARN深入浅出(Hadoop2.0、Spark、Storm和Tez)

    随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握Hadoop技术的开发 ...

  4. 基于Hadoop2.0、YARN技术的大数据高阶应用实战(Hadoop2.0\YARN\Ma

    Hadoop的前景 随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握H ...

  5. Hadoop2.x Yarn作业提交(客户端)

    转自:http://blog.csdn.net/lihm0_1/article/details/22186833 YARN作业提交的客户端仍然使用RunJar类,和MR1一样,可参考 http://b ...

  6. YARN日志聚合相关参数配置

    日志聚合是YARN提供的日志中央化管理功能,它能将运行完成的Container/任务日志上传到HDFS上,从而减轻NodeManager负载,且提供一个中央化存储和分析机制.默认情况下,Contain ...

  7. Hadoop2.0(HDFS2)以及YARN设计的亮点

    YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResouceManager负责对各个Node ...

  8. Hadoop2.4.1 64-Bit QJM HA and YARN HA + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA Install

    Hadoop2.4.1 64-Bit QJM HA and YARN HA Install + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA(Hadoop ...

  9. Hadoop2.2.0--Hadoop Federation、Automatic HA、Yarn完全分布式集群结构

    Hadoop有很多的上场时间,与系统上线.手头的事情略少.So,抓紧时间去通过一遍Hadoop2在下面Hadoop联盟(Federation).Hadoop2可用性(HA)及Yarn的全然分布式配置. ...

随机推荐

  1. 在rhel6上安装Python 2.7和Python 3.3

    安装前,操作系统软件包准备编译python要安装development tools.此外,还要安装一些其他的libs,没有这些libs,python的interpreter可能会无法正常工作 # yu ...

  2. bug list

    机型: Samsung Galaxy S GT-I9000 版本: 2.2.1bug: Couldn't create directory for SharedPreferences file xxx ...

  3. django 数据库获取值

    数据库表中的内容如下: models.Step_Type.objects.values()获取model中的符合条件的值, 实际为把表中的所有值都查询出来,如查询结果为:<QuerySet [{ ...

  4. macbook基本配置

    1.安装iterm2, 2.安装搜狗输入法, 3.安装迅雷, 4.安装homebrew 5.安装新版的gcc,bash等等,及升级配置文件.

  5. nc 传输文件

    在接收服务器上执行:(123.57.36.227) [root@ ~]# cat /tmp/user.txt hello world [root@ ~]# nc -v -l -p >/tmp/u ...

  6. ny788 又见Alice and Bob

    又见Alice and Bob 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 集训生活如此乏味,于是Alice和Bob发明了一个新游戏.规则如下:首先,他们得到一个 ...

  7. django:DateTimeField如何自动设置为当前时间并且能被修改 ——django日期时间字段的使用

    创建django的model时,有DateTimeField.DateField和TimeField三种类型可以用来创建日期字段,其值分别对应着datetime().date().time()三中对象 ...

  8. Spark性能优化指南——基础篇转

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  9. Linux Jenkins配置Git

    1.卸载Centos自带的git1.7.1:通过git –version查看系统带的版本,Centos应该自带的是git版本是1.7.1 终端输入:yum remove git 2.安装所需软件包 终 ...

  10. 多核cpu电脑运行多线程程序的问题

    呵呵,当初我学多线程时也遇到过这样的问题,也是输出的结果每次都不一样.后来我找到原因了---都是多核惹得祸. 我猜你的电脑应该也是多核的.单核的cpu在处理多线程时每次只能执行一跳指令,也就是说无论你 ...