传送门

假设 \(f^k(i)\) 就是 \(f(i)\)

莫比乌斯反演得到

\[ans=\sum_{i=1}^{N}\lfloor\frac{N}{i}\rfloor^2\sum_{d|i}f(d)\mu(\frac{i}{d})
\]

令 \(g(N)=\sum_{i=1}^{N}(f\times \mu)(i)\)

而 \((f\times \mu)\times 1=f\times (\mu\times 1)=f\)

所以

\[\sum_{i=1}^{N}f(i)=\sum_{i=1}^{N}(f\times \mu \times 1)(i)=\sum_{i=1}^{N}g(\lfloor\frac{N}{i}\rfloor)
\]

\[g(N)=\sum_{i=1}^{N}f(i)-\sum_{i=2}^{N}g(\lfloor\frac{N}{i}\rfloor)
\]

类似 \(UOJ188:sanrd\) 一样筛出 \(f\) 的和即可

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint; const int maxn(1e6 + 5); inline uint Pow(uint x, int y) {
register uint ret = 1;
for (; y; y >>= 1, x = x * x) if (y & 1) ret = ret * x;
return ret;
} int pr[maxn], tot, id1[maxn], id2[maxn], d, cnt, k;
bitset <maxn> ispr;
uint n, f[maxn], val[maxn], prk[maxn], g[maxn]; inline void Sieve(int mx) {
register int i, j;
for (i = 2, ispr[1] = 1; i <= mx; ++i) {
if (!ispr[i]) pr[++tot] = i, prk[tot] = Pow(i, k);
for (j = 1; j <= tot && pr[j] * i <= mx; ++j) {
ispr[pr[j] * i] = 1;
if (!(i % pr[j])) break;
}
}
} # define ID(x) (x) <= d ? id1[x] : id2[n / (x)] uint Calc(uint x, int m) {
if (x <= 1 || pr[m] > x) return 0;
register uint i, t, ret = 0;
for (i = m; i <= tot && (ll)pr[i] * pr[i] <= x; ++i)
for (t = pr[i]; (ll)pr[i] * t <= x; t *= pr[i])
ret += Calc(x / t, i + 1) + (f[ID(x / t)] - i + 1) * prk[i];
return ret;
} inline void Init(uint _n) {
register uint i, j;
for (cnt = 0, d = sqrt(n = _n), i = 1; i <= n; i = j + 1) {
j = n / (n / i), val[++cnt] = n / i;
val[cnt] <= d ? id1[val[cnt]] = cnt : id2[n / val[cnt]] = cnt;
f[cnt] = val[cnt] - 1;
}
for (i = 1; i <= tot && (ll)pr[i] * pr[i] <= n; ++i)
for (j = 1; j <= cnt && (ll)pr[i] * pr[i] <= val[j]; ++j)
f[j] -= f[ID(val[j] / pr[i])] - i + 1;
} inline uint Solve(uint r) {
if (~g[ID(r)]) return g[ID(r)];
register uint ret = Calc(r, 1) + f[ID(r)], i, j;
for (i = 2, j; i <= r; i = j + 1) j = r / (r / i), ret -= Solve(r / i) * (j - i + 1);
return g[ID(r)] = ret;
} int main() {
memset(g, -1, sizeof(g));
scanf("%u%d", &n, &k), Sieve(sqrt(n)), Init(n);
register uint i, j, ans = 0, lst = 0, cur;
for (i = 1; i <= n; i = j + 1) {
j = n / (n / i), cur = Solve(j);
ans += (n / i) * (n / i) * (cur - lst);
lst = cur;
}
printf("%u\n", ans);
return 0;
}

LOJ572: Misaka Network 与求和的更多相关文章

  1. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

  2. LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]

    传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...

  3. LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)

    题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...

  4. LOJ 572 「LibreOJ Round #11」Misaka Network 与求和——min_25筛

    题目:https://loj.ac/problem/572 莫比乌斯反演得 \( ans=\sum\limits_{D=1}^{n}\left\lfloor\frac{n}{D}\right\rflo ...

  5. Loj#572. 「LibreOJ Round #11」Misaka Network 与求和

    题目 有生之年我竟然能\(A\) 这个题求的是这个 \[\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))^k\] \(f(i)\)定义为\(i\)的次大质因子,其中\(f(p)= ...

  6. loj 572 Misaka Network 与求和 —— min_25筛

    题目:https://loj.ac/problem/572 推式子:https://www.cnblogs.com/cjoieryl/p/10150718.html 又学习了一下杜教筛hh: 原来 u ...

  7. [LOJ 572] Misaka Network 与求和

    一.题目 点此看题 二.解法 直接推柿子吧: \[\sum_{i=1}^n\sum_{j=1}^nf(\gcd(i,j))^k \] \[\sum_{d=1}^nf(d)^k\sum_{i=1}^{n ...

  8. Min_25 筛小结

    Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...

  9. 可能是一篇(抄来的)min25学习笔记

    可能是一篇(抄来的)min25学习笔记 一个要求很多的积性函数 我们考虑有一个积性函数,这个函数满足可以快速计算质数处的值 且质数可以写成一个多项式的形式--而且这个多项式如果强行套在合数上,满足积性 ...

随机推荐

  1. c语言中变量/函数命名以单下划线(_)和双下划线(__) 开头的意义

    以单下划线(_)表明是标准库的变量 双下划线(__) 开头表明是编译器的变量 建议自己在命名的时候不要用下划线开头,避免与标准库中的命名冲突 命名方法有好多,何必为自己找不自在呢.

  2. springcloud(五)-Ribbon

    前言 先发句牢骚,最近太TM忙了,一直没时间静下心来继续写微服务架构!EMMMMMM..... 经过前文的讲解,我们已经实现了微服务的注册与发现.启动各个微服务时,Eureka Client会把自己的 ...

  3. Linux常用快捷键、文件管理和查询

    有话要说 为什么要用Linux?要用Linux的原因太多,想说说不完啊.如果你说用Linux只是为了装逼,那证明你真的还很菜.不排除有装逼了因素,那也只占非常少的比例,可以忽略不计.我们反问一下,为什 ...

  4. Mac 10.12常用软件清单

    链接: https://pan.baidu.com/s/1slds1OD 密码: 7m5t 配套教程:http://www.cnblogs.com/EasonJim/tag/mac/ 如果失效了,联系 ...

  5. javascript中childNodes与children的区别

    1.childNodes:获取节点,不同浏览器表现不同: IE:只获取元素节点: 非IE:获取元素节点与文本节点: 解决方案:if(childNode.nodeName=="#text&qu ...

  6. Path;Paths和Files;FileVisitor

    package filet; import java.io.FileOutputStream; import java.nio.file.FileStore; import java.nio.file ...

  7. 草稿-把vim变成IDE

    从昨天下午到现在一直在研究vim,初学者,从vim最基本的命令开始看起的.是通过vimtutor学习的. 看到最后一章的时候,发现原来vimtutor中的知识知识vim中的冰山一角,vim真正的强大之 ...

  8. Maven报错:maven-archetype-webapp:RELEASE from any of the configured repositories

    今天学习maven,在控制台下新建maven项目没有问题,但是在STS(eclipse)下创建maven项目老是报错,郁闷死了: ----------------------------------- ...

  9. Markdown 语法整理大集合2017

    简明教程:https://ouweiya.gitbooks.io/markdown/ 1.标题 代码 注:# 后面保持空格 # h1 ## h2 ### h3 #### h4 ##### h5 ### ...

  10. [转]MONTHS_BETWEEN Function - Oracle to SQL Server Migration

    本文转自:http://www.sqlines.com/oracle-to-sql-server/months_between In Oracle, MONTHS_BETWEEN(date1, dat ...