1、blur 归一化滤波器
Blurs an image using the normalized box filter.
C++: void blur(InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT )

Parameters:
src – input image; it can have any number of channels, which are processed independently,but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.  输入图像
dst – output image of the same size and type as src.  输出图像
ksize – blurring kernel size.  定义内核大小 ( Size(w,h) ,w像素宽度,h像素高度 )
anchor – anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.  指定锚点位置(被平滑点), 如果是负值,取核的中心为锚点。
borderType – border mode used to extrapolate pixels outside of the image.

2、GaussianBlur 高斯滤波器
Blurs an image using a Gaussian filter.
C++: void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )

Parameters:
src – input image; the image can have any number of channels, which are processed independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.  输入图像
dst – output image of the same size and type as src.  输出图像
ksize – Gaussian kernel size. ksize.width and ksize.height can differ but they both must be positive and odd. Or, they can be zero’s and then they are computed from sigma* .  定义内核的大小(需要考虑的邻域范围)。 必须是正奇数,否则将使用 参数来计算内核大小。
sigmaX – Gaussian kernel standard deviation in X direction.  x 方向标准方差, 如果是 使用内核大小计算得到。
sigmaY – Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height , respectively (see getGaussianKernel() for details); to fully control the result regardless of possible future modifications of all this semantics, it is recommended to specify all of ksize, sigmaX, and sigmaY.  y 方向标准方差, 如果是 使用内核大小计算得到。
borderType – pixel extrapolation method (see borderInterpolate() for details).

3、medianBlur 中值滤波器
Blurs an image using the median filter.
C++: void medianBlur(InputArray src, OutputArray dst, int ksize)

Parameters:
src – input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
dst – destination array of the same size and type as src.
ksize – aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...    内核大小 (只需一个值,因为我们使用正方形窗口),比1大的奇数

4、bilateralFilter 双边滤波器
Applies the bilateral filter to an image.
C++: void bilateralFilter(InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT )

Parameters:
src – Source 8-bit or floating-point, 1-channel or 3-channel image.
dst – Destination image of the same size and type as src .
d – Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it is computed from sigmaSpace .  像素的邻域直径

sigmaColor – Filter sigma in the color space. A larger value of the parameter means that farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in larger areas of semi-equal color.  颜色空间的标准方差
sigmaSpace – Filter sigma in the coordinate space. A larger value of the parameter means that farther pixels will influence each other as long as their colors are close enough (see sigmaColor ). When d>0 , it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is proportional to sigmaSpace .  坐标空间的标准方差(像素单位)

OpenCV学习笔记——图像平滑处理的更多相关文章

  1. OpenCV学习笔记3

    OpenCV学习笔记3 图像平滑(低通滤波) 使用低通滤波器可以达到图像模糊的目的.这对与去除噪音很有帮助.其实就是去除图像中的高频成分(比如:噪音,边界).所以边界也会被模糊一点.(当然,也有一些模 ...

  2. opencv学习笔记(七)SVM+HOG

    opencv学习笔记(七)SVM+HOG 一.简介 方向梯度直方图(Histogram of Oriented Gradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子 ...

  3. opencv学习笔记(六)直方图比较图片相似度

    opencv学习笔记(六)直方图比较图片相似度 opencv提供了API来比较图片的相似程度,使我们很简单的就能对2个图片进行比较,这就是直方图的比较,直方图英文是histogram, 原理就是就是将 ...

  4. opencv学习笔记(五)镜像对称

    opencv学习笔记(五)镜像对称 设图像的宽度为width,长度为height.(x,y)为变换后的坐标,(x0,y0)为原图像的坐标. 水平镜像变换: 代码实现: #include <ios ...

  5. opencv学习笔记(四)投影

    opencv学习笔记(四)投影 任选了一张图片用于测试,图片如下所示: #include <cv.h> #include <highgui.h> using namespace ...

  6. opencv学习笔记(三)基本数据类型

    opencv学习笔记(三)基本数据类型 类:DataType 将C++数据类型转换为对应的opencv数据类型 OpenCV原始数据类型的特征模版.OpenCV的原始数据类型包括unsigned ch ...

  7. opencv学习笔记(二)寻找轮廓

    opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, O ...

  8. opencv学习笔记(一)IplImage, CvMat, Mat 的关系

    opencv学习笔记(一)IplImage, CvMat, Mat 的关系 opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,M ...

  9. paper 93:OpenCV学习笔记大集锦

    整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址: ...

随机推荐

  1. 解决webview上移

    //解决webview上移 $(".webView").blur(function() { setTimeout(function() { var scrollHeight = d ...

  2. Redis事件

    Redis事件 Redis的ae(Redis用的事件模型库) ae.c Redis服务器是一个事件驱动程序,服务器需要处理以下两类事件: 文件事件(file event):Redis服务器通过套接字与 ...

  3. linux几个重要的组合键

    我们在用Windows系统时,有没有感觉快键键让我们工作更有效率,在Linux系统中仍有很好用的快捷键,这些快捷键可以辅助我们进行指令的编写与程序的中断呢,下面介绍几个经常用到的快捷键. 一.Tab- ...

  4. Go语言中的字符串处理

    1 概述 字符串,string,一串固定长度的字符连接起来的字符集合.Go语言的字符串是使用UTF-8编码的.UTF-8是Unicode的实现方式之一. Go语言原生支持字符串.使用双引号(“”)或反 ...

  5. Vivado 调用自定义IP核

    关于Vivado如何创建自定义IP核有大量的参考文章,这里就不多加阐述了,本文目的主要是解决如何在新建工程中引用其它工程已经自定义封装好的IP核,从而实现自定义IP核的灵活复用. 举个例子,我们的目标 ...

  6. Opencv3.0-python: 编译报错color.cpp:7456: error: (-215) scn == 3 || scn == 4 的解决方案

    结合Opencv3.0读取视频时,出现报错:C:\projects\opencv-python\opencv\modules\imgproc\src\color.cpp:11111: error: ( ...

  7. 20155308 2016-2017-2 《Java程序设计》第10周学习总结

    20155308 2016-2017-2 <Java程序设计>第10周学习总结 教材学习内容总结 网络概述 计算机网络:通过一定的物理设备将处于不同位置的计算机连接起来组成的网络,这个网络 ...

  8. 20155323 2016-2017-2《Java程序设计》课程总结

    20155323 2016-2017-2<Java程序设计>课程总结 课程与实验链接 预备作业一:新学期,新展望 预备作业二:游戏经验 预备作业三:安装虚拟机和Linux系统的学习 201 ...

  9. 20155334 实验二 Java面向对象程序设计

    实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验要求 完成实验.撰写 ...

  10. django使用流程

    1.安装django包 (命令行)>pip install django # conda install django 2.安装成功后,可以新建django项目 1(命令行)>django ...