HDU2588:GCD(欧拉函数的应用)
题目链接:传送门
题目需求:Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.(2<=N<=1000000000, 1<=M<=N),
题目解析:
求(X,N),不用想要分解N的因子,分解方法如下,我一开始直接分解for(int i=2;i<=n/2;i++),这样的话如果n==10^9,那么直接超时,因为这点失误直接浪费了一中午
的时间,要这么分解for(int i=2;i*i<=n;i++)具体请在代码里面看,然后开始求(X,N)>=M。
这才是核心:
要求有多少个 i 满足gcd(i, N) = d(1<=i<=N)
如果gcd(i, N) = d,则gcd(i/d, N/d) = 1
由于i <= N,所以 i/d <= N/d,转化为求多少个不大于N/d的数与N/d互质,而这就是欧拉函数
所以有phi(N/d)个 i 满足gcd(i, N) = d,所以求gcd(i,N)>=M,就是求N的因子中大于等于M的欧拉函数值,
即gcd(N/d1)+gcd(N/d2)+...+gcd(N/dn),其中di>=M,且为N的因子。
直接写:(都是15ms,这是后台数据的问题,数据多了肯定还是打表快)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
typedef __int64 ll;
using namespace std;
ll n,m,sum,top,key,M,coun,i;
int f[];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
sum=;
top=;
scanf("%I64d%I64d",&n,&m);
for(i=; i*i<n; i++)
{
if(n%i==)
{
f[top++]=i;
f[top++]=n/i;
}
}
if(i*i==n)//千万别忘了这一句,如16=4*4
{
f[top++]=i;
}
sort(f,f+top);
key=-;
for(i=; i<top; i++)
{
if(f[i]>=m)
{
key=i;
break;
}
}
if(key==-)
{
printf("1\n");
continue;
}
for(i=key; i<top; i++)
{
M=n/f[i];
coun=n/f[i];
for(ll z=; z*z<=M; z++)
{
if(M%z==)
{
coun-=coun/z;
M/=z;
while(M%z==)
M/=z;
}
}
if(M!=) coun-=coun/M;
sum+=coun;
}
printf("%I64d\n",sum);
}
return ;
}
一部分欧拉值打表:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
typedef __int64 ll;
using namespace std;
ll n,m,sum,top,key,i;
int phi[],f[];
void init()
{
memset(phi,,sizeof(phi));
phi[]=;
for(int i=; i<=; i++)
{
if(!phi[i])
{
for(int j=i; j<=; j=j+i)
{
if(!phi[j]) phi[j]=j;
phi[j]-=phi[j]/i;
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
init();
while(T--)
{
sum=;
top=;
scanf("%I64d%I64d",&n,&m);
for(i=; i*i<n; i++)
{
if(n%i==)
{
f[top++]=i;
f[top++]=n/i;
}
}
if(i*i==n)
{
f[top++]=i;
}
sort(f,f+top);
for(i=; i<top; i++)
{
if(f[i]>=m)
{
key=i;
break;
}
}
if(key==-)
{
printf("1\n");
continue;
}
for(ll i=key; i<top; i++)
{
if(n/f[i]<=)
{
sum+=phi[n/f[i]];
continue;
}
ll M=n/f[i];
ll coun=n/f[i];
for(ll z=; z*z<=M; z++)
{
if(M%z==)
{
coun-=coun/z;
M/=z;
while(M%z==)
M/=z;
}
}
if(M!=) coun-=coun/M;
sum+=coun;
}
printf("%I64d\n",sum);
}
return ;
}
大神博客:http://hi.baidu.com/bg1995/item/ef25e3261f584053c38d59a8
HDU2588:GCD(欧拉函数的应用)的更多相关文章
- hdu2588 gcd 欧拉函数
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- SVN目录权限配置
1.如果要使用SVN,需要有一个项目的保存目录,例如把该目录设为“C:\MyPro”文件夹 2.把该目录发布为SVN项目目录,则需要通过以下命令行 svnadmin create c:\mypro ...
- NHibernate初学四之关联一对一关系
1:数据库脚本,创建两张表T_Area.T_Unit,表示一个单位对应一个地区,在单位表中有个AreaID为T_Area表中的ID: CREATE TABLE [dbo].[T_Area]( [ID] ...
- php学习十:继承
在php中,我们常常会定义许多类,当多个类里面的方法或者属性出现重复的时候,会常常造成代码重复和冗杂的弊端,这个时候,我们可以用到继承(extends) 继承的特性: * 1.子类可以扩充属性* 2. ...
- Android 使用RadioGroup和RadioButton实现单选效果
RadioButton和CheckBox的区别:CheckBox选中之后可以直接取消,RadioButton选中之后不能直接取消,所以一般情况下不建议单独使用.1.RadioGroup:RadioBu ...
- qq邮箱发送,mail from address must be same as authorization user
由于邮箱发送的邮箱账号更换,所以重新测试.结果一直出错,要不就是请求超时,要不就是未授权. 用smtp 开始的时候,端口使用495,结果是请求超时. 后来改成25,结果是未授权. 再后来听人说,有一个 ...
- django restframwork教程之Request和Response
从这一篇文章开始,我们会覆盖整个REST framwork框架的核心,接下来让我们介绍一些基础的构建块 Request 对象 REST framework 引入了一个扩展HttpRequest的请求对 ...
- MQTT协议笔记之发布流程
MQTT协议笔记之发布流程 前言 这次要讲到客户端/服务器的发布消息行为,与PUBLISH相关的消息类型,会在这里看到. PUBLISH 客户端发布消息经由服务器分发到所有对应的订阅者那里.一个订阅者 ...
- js:{}与new Object()的区别是什么
var a = {}; var b = new Object(); 这两种创建对象方式,从测试效果来看,{}会快一点. {} 这个叫做对象字面量 如果new Object()中没有传入参数,与{}是一 ...
- 11.事件驱动events
事件驱动events ==> events.EventEmitter, EventEmitter 的核心就是事件发射与事件监听器功能的封装更详细的 API 文档参见 http://nodejs. ...
- {sharepoint} More on SharePoint 2010 Application Pools
More on SharePoint 2010 Application Pools Print | posted on Friday, December 04, 2009 3:26 PM Blimey ...