树分治之点分治入门

所谓点分治,就是对于树针对点的分治处理

首先找出重心以保证时间复杂度

然后递归处理所有子树

对于这道题,对于点对(u,v)满足dis(u,v)<=k,分2种情况

  1. 路径过当前根
  2. 路径在子树中(递归处理)

那么关键就是如何计算第一种情况

设d[i]表示点i到当前根rt的距离,可以将d数组排序后线性复杂度求

然而此时会有些点对是在同一棵子树中,这些情况要减去

注意每次递归都要找一次重心以保证效率

这样复杂度就是O(nlog2n)

Code

#include <cstdio>
#include <algorithm>
#include <cstring>
#define Inf 0x7fffffff
#define N 10010
using namespace std; struct info{int to,nex,w;}e[N*2];
int n,k,tot,head[N],d[N],rt,Ans,sum,f[N],sz[N],dep[N];
bool vis[N]; void Link(int u,int v,int w){
e[++tot].nex=head[u];head[u]=tot;e[tot].to=v;e[tot].w=w;
} inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} void getrt(int u,int fa){
sz[u]=1,f[u]=0;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==fa||vis[v]) continue;
getrt(v,u);
sz[u]+=sz[v];
f[u]=max(f[u],sz[v]);
}
f[u]=max(f[u],sum-sz[u]);
if(f[rt]>f[u]) rt=u;
} void Init(){
tot=0,rt=0,Ans=0;
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
for(int i=1;i<n;++i){
int u=read(),v=read(),w=read();
Link(u,v,w),Link(v,u,w);
}
sum=n,f[0]=Inf;
getrt(1,0);
} void getdep(int u,int fa){
dep[++dep[0]]=d[u];
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==fa||vis[v]) continue;
d[v]=d[u]+e[i].w;
getdep(v,u);
}
} int cal(int u,int cur){
d[u]=cur,dep[0]=0;
getdep(u,0);
sort(dep+1,dep+dep[0]+1);
int t=0;
for(int l=1,r=dep[0];l<r;)
if(dep[l]+dep[r]<=k) t+=r-l,++l;
else --r;
return t;
} void solve(int u){
Ans+=cal(u,0);
vis[u]=1;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(vis[v]) continue;
Ans-=cal(v,e[i].w);
sum=sz[v];
getrt(v,rt=0);
solve(rt);
}
} int main(){
while(~scanf("%d%d",&n,&k)&&n){
Init();
solve(rt);
printf("%d\n",Ans);
}
}

[POJ1741]Tree(点分治)的更多相关文章

  1. [poj1741]Tree(点分治+容斥原理)

    题意:求树中点对距离<=k的无序点对个数. 解题关键:树上点分治,这个分治并没有传统分治的合并过程,只是分成各个小问题,并将各个小问题的答案相加即可,也就是每层的复杂度并不在合并的过程,是在每层 ...

  2. [bzoj1468][poj1741]Tree[点分治]

    可以说是点分治第一题,之前那道的点分治只是模模糊糊,做完这道题感觉清楚了很多,点分治可以理解为每次树的重心(这样会把数分为若干棵子树,子树大小为log级别),然后统计包含重心的整个子树的值减去各个子树 ...

  3. POJ1741 Tree 树分治模板

    http://poj.org/problem?id=1741   题意:一棵n个点的树,每条边有距离v,求该树中距离小于等于k的点的对数.   dis[y]表示点y到根x的距离,v代表根到子树根的距离 ...

  4. POJ1741 Tree + BZOJ1468 Tree 【点分治】

    POJ1741 Tree + BZOJ1468 Tree Description Give a tree with n vertices,each edge has a length(positive ...

  5. POJ1741 Tree(树分治——点分治)题解

    题意:给一棵树,问你最多能找到几个组合(u,v),使得两点距离不超过k. 思路:点分治,复杂度O(nlogn*logn).看了半天还是有点模糊. 显然,所有满足要求的组合,连接这两个点,他们必然经过他 ...

  6. [poj1741][tree] (树/点分治)

    Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...

  7. POJ1741 tree 【点分治】

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25286   Accepted: 8421 Description ...

  8. POJ1741 Tree(树的点分治基础题)

    Give a tree with n vertices,each edge has a length(positive integer less than 1001).Define dist(u,v) ...

  9. POJ1741——Tree(树的点分治)

    1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2013-11-17 1 ...

随机推荐

  1. 毫秒级百万数据分页存储过程(mssql)

    /****** Object: StoredProcedure [dbo].[up_Page2005] Script Date: 11/28/2013 17:10:47 ******/ SET ANS ...

  2. Mininet自定义网络拓扑

    在Mininet上的网络拓扑有两种方式 第一种 用mininet自带的miniedit可视化工具,在mininet/mininet/examples/的目录下的一个miniedit.py,运行这个文件 ...

  3. 函数去抖(debounce)与 函数节流(throttle)

    以下场景往往由于事件频繁被触发,因而频繁执行DOM操作.资源加载等重行为,导致UI停顿甚至浏览器崩溃. 1. window对象的resize.scroll事件 2. 拖拽时的mousemove事件 3 ...

  4. navicat连接PostgreSQL报:column “rolcatupdate” does not exist ...错误的解决办法

    avicat premium 连接PostgreSQL出现: column “rolcatupdate” does not exist ... 错误如图: 解决方案: 看看你的navicat 是否为最 ...

  5. PHP笔记09:PHP之 MVC理解

    1. 首先通俗地说说我对MVC的理解: Model是负责干活的,它干的活主要是从数据库中获取需要的数据以及对获取的数据按照业务逻辑进行加工处理,至于为什么要干某件活,何时干某件活它一概不管,而这正是C ...

  6. Java虚拟机14:类加载器

    类与类加载器 虚拟机设计团队把类加载阶段张的"通过一个类的全限定名来获取此类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类.实现这 ...

  7. WOSign API

    [HttpGet] public ActionResult WoSign() { // System.IO.FileStream fs = System.IO.File.OpenRead(System ...

  8. fpn

    class-aware detector 和 class-agnostic detector:https://blog.csdn.net/yeyang911/article/details/68484 ...

  9. priority_queue详解

    priority_queue是一个安排好的顺序存储的队列,队首是优先级最高的元素. Template<class T , class Container = vector<T> , ...

  10. vue项目 webpack打包后,图片路径是绝对路径

    vue项目,使用webpack打包,虽然在全局把路径改成了相对的路径,但是图片引用的路径还是异常的,解决办法如下: 1.config文件夹下index.js中: assetsPublicPath:&q ...