解题:POI 2012 Cloakroom
首先,单独处理每个询问复杂度显然不可承受,还是考虑通过排序使得限制更容易达到:按照$a$将物品排序,按照$m$将询问排序,这样肯定是要不断添加物品才能达到要求,顺着做一遍就行了
然后发现$b$的限制仍然不好满足,但是我们的可行性dp的数组只记录了是否可行,还有利用的余地,那么以$dp[i]$记录达到$i$的所有方案中最小的$b$的最大值,查询的时候就可以判定了
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,K=,inf=1e9;
struct a{int cc,aa,bb;}obj[N];
struct b{int m,k,s,id;}qry[M];
int n,T,last,dp[K],outp[M];
bool cmp1(a x,a y)
{
return x.aa<y.aa;
}
bool cmp2(b x,b y)
{
return x.m<y.m;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d%d",&obj[i].cc,&obj[i].aa,&obj[i].bb);
scanf("%d",&T);
for(int i=;i<=T;i++)
scanf("%d%d%d",&qry[i].m,&qry[i].k,&qry[i].s),qry[i].id=i;
sort(obj+,obj++n,cmp1),sort(qry+,qry++T,cmp2); dp[]=inf,last=;
for(int i=;i<=T;i++)
{
while(last<=n&&obj[last].aa<=qry[i].m)
{
for(int j=K-;j>=obj[last].cc;j--)
dp[j]=max(dp[j],min(dp[j-obj[last].cc],obj[last].bb));
last++;
}
outp[qry[i].id]=(dp[qry[i].k]>qry[i].m+qry[i].s);
}
for(int i=;i<=T;i++)
outp[i]?printf("TAK\n"):printf("NIE\n");
return ;
}
解题:POI 2012 Cloakroom的更多相关文章
- 解题:POI 2012 Well
题面 比较明显地能看出二分来,但是检查函数很难写.对于二分出的一个$mid$,我们要让它满足在$m$次操作内令序列中存在一个为零的位置,同时使得任意相邻的两项之差不超过$mid$ 第二项的检查比较好做 ...
- 【BZOJ 2803】【POI 2012】Prefixuffix
http://www.lydsy.com/JudgeOnline/problem.php?id=2803 核心思想是利用单调性. 因为长度为L的前缀和后缀循环同构是AB和BA的形式,我们设\(f(i) ...
- [ POI 2012 ] Letters
\(\\\) \(Description\) 给出两个长度为 \(N\) 的字符串\(S_1,S_2\),且保证两个字符串中每一个字符出现次数相同. 现在一次操作可以交换相邻的两个字符,问将 \(S_ ...
- POI题解整合
我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...
- 解题:POI 2016 Nim z utrudnieniem
题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...
- 2012 East Central Regional Contest 解题报告
昨晚各种莫名其妙卡题. 不过细看这套题还挺简单的.全是各种暴力. 除了最后一道题计算几何看起来很麻烦的样子,其他题都是很好写的吧. A. Babs' Box Boutique 题目大意是给出不超过10 ...
- Regionals 2012, Asia - Jakarta 解题报告
啥都不会做了.. 做题慢死 A.Grandpa's Walk 签到题. 直接DFS就行. 注意先判断这个点可以作为一个路径的起点不. 然后再DFS. 否则处理起来略麻烦 #include <io ...
- Regionals 2012, North America - Greater NY 解题报告
这套题..除了几何的都出了 完全没时间学几何.杯具 A,B,J 水题不解释 C.Pen Counts 这题的话 写几个不等式限制边得范围就行了 然后枚举最小边 D.Maximum Random Wal ...
- 解题:NOI 2012 骑行川藏
题面 入手点是每段路程中能量$e$与时间$t$的关系,$t-e$这个函数的导数对于各个路段一样,否则我们可以从导数大的一段路抽出一部分能量分给导数小的,这样会更优 毕姥爷在考场上的做法:猜一猜,然后拿 ...
随机推荐
- HTTP结构讲解——《HTTP权威指南》系列
HTTP结构 第二部分的5章主要介绍了HTTP服务器,代理,缓存,网关和机器人应用程序,这些都是Web系统架构的构造模块. Web服务器 第五章 Web服务器会对HTTP请求进行处理并提供响应.术语& ...
- 《物质世界 (Outward)》证明不必压缩制作大型角色扮演游戏的时间
<物质世界>是一款雄心勃勃的开放世界角色扮演游戏 (RPG),设计这款游戏的公司规模只有您预期的三分之一.游戏中的一切都是动态的,拥有许多炫酷的系统设计,大家可以分屏合作掌控整个场景.参与 ...
- 设置PNG图片DPI 信息,保存为PDF(使用Magick),与OpenCV转换
目录 任务描述 解决方案 Magick++ Talk is cheap, show me the code. 与 Opencv 配合 相关链接 任务描述 我有这样一个需求,读取一张格式为PNG 或者 ...
- MongoDB开启权限认证
MongoDB默认安装完后,如果在配置文件中没有加上auth = true,是没有用户权限认证的,这样对于一个数据库来说是相对不安全的,尤其是在外网的情况下. 接下来是配置权限的过程: //切入到 ...
- AndroidStudio引入AAR依赖
title: AndroidStudio引入AAR依赖 date: 2016-08-10 00:25:57 tags: [aar] categories: [Tool,Gradle] --- 概述 本 ...
- Python爬虫入门(6):Cookie的使用
为什么要使用Cookie呢? Cookie,指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密) 比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓 ...
- redis rdb aof比较
Redis中数据存储模式有2种:cache-only,persistence; cache-only即只做为“缓存”服务,不持久数据,数据在服务终止后将消失,此模式下也将不存在“数据恢复”的手段,是一 ...
- Requests库入门——应用实例-网络图片的爬取与保存(好看的小姐姐≧▽≦)
在B站学习这一节的时候,弹幕最为激烈,不管大家是出于什么目的都想体验一下网络爬虫爬取图片的魅力,毕竟之前的实例实话说都是一些没有太大作用的信息. 好了,直接上代码: import requests i ...
- package分析
由于大家对package的使用存在太多困惑,我在这里将自己对于package的使用的领悟进行一点总结: package中所存放的文件 所有文件,不过一般分一下就分这三种 1,java程序源文件,扩展名 ...
- java 集合 父类的使用子类的方法时候 底层自动转型为子类的数据类型
跟继承多态不一样 继承多态需要显示转型