P3348 [ZJOI2016]大森林(Link-cut-tree)
题解
题面大意:
\(0.\)区间加节点
\(1.\)区间换根
\(2.\)单点询问距离
如果没有\(1\)操作,因为区间加节点都是加在下面,所以我们可以直接把\(n\)棵树压成一棵树,直接询问即可
有\(1\)操作怎么办?
上面挖掘了一点性质,
加节点加在下面,那么我们可以先把节点都加上去,再询问
那么把操作离线,
先按操作位置排序,再按操作排序(\(0,1\)先),再按时间排序
对于\(0,1\)操作都新建节点
\(0\)建实点
\(1\)建虚点
\(0\)操作的点将连向最后的\(1\)操作
默认每个\(1\)操作连向上一个操作(加点直接加在\(1\)下面)
现在唯一的问题即是\(1\)操作
我们想一下\(pos\)转移到\(pos+1\)
由于一些换根操作
树的形态会发生改变
假如一个换根操作\([l,r]\)
\(x\)换到\(y\)
\(l-1\),根是\(x\)
\(l\),根是\(y\)
那么改变的地方就是把在\(x->y\)操作之后接上\(x\)的点,全部接到\(y\)下面
一个一个挪肯定不行
所以需要一个虚点,挪的话只要挪这一个点
如果没有理解,可以想想,哪些点会连向这个虚点?
一定是时间在它之后的点
没换根之前,这些点都会连向\(x\)
那么问题就解决了..
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 500010;
int ch[N][2], val[N], sum[N], fa[N], tot;
bool isroot(int x) { return ch[fa[x]][0] != x && ch[fa[x]][1] != x; }
#define get(x) (ch[fa[x]][1] == x)
void pushup(int x) { sum[x] = sum[ch[x][0]] + sum[ch[x][1]] + val[x]; }
void rotate(int x) {
int y = fa[x], z = fa[y], k = get(x);
if (!isroot(y)) ch[z][get(y)] = x; fa[x] = z;
ch[y][k] = ch[x][k ^ 1]; fa[ch[x][k ^ 1]] = y;
ch[x][k ^ 1] = y; fa[y] = x;
pushup(y);
}
void splay(int x) {
while (!isroot(x)) {
int y = fa[x];
if (!isroot(y))
(get(x) ^ get(y)) ? rotate(x) : rotate(y);
rotate(x);
}
pushup(x);
}
int access(int x) {
int y = 0; for (; x; y = x, x = fa[x]) splay(x), ch[x][1] = y, pushup(x);
return y;
}
void link(int x, int y) { access(x); splay(x); fa[x] = y; }
void cut(int x) { access(x); splay(x); ch[x][0] = fa[ch[x][0]] = 0; pushup(x); }
void newnode(int x) { val[++tot] = x; sum[tot] = x; }
int L[N], R[N], id[N], len;
struct node {
int pos, op, x, y;
bool operator < (const node &z) const {
return pos == z.pos ? op < z.op : pos < z.pos;
}
}q[N];
int ans[N];
int query(int x, int y) {
int ans = 0, lca;
access(x), splay(x); ans += sum[x];
lca = access(y), splay(y), ans += sum[y];
access(lca), splay(lca), ans -= 2 * sum[lca];
return ans;
}
int main() {
int n, m, cnt = 1, last = 2, qs = 0;
read(n), read(m);
newnode(1); L[1] = 1, R[1] = n; id[1] = 1;
newnode(0); link(2, 1);
for (int i = 1; i <= m; i++) {
int op; read(op);
if (!op) {
int l, r;
read(l), read(r);
newnode(1);
L[++cnt] = l, R[cnt] = r, id[cnt] = tot;
q[++len] = (node) {1, i - m, tot, last};
}
else if (op == 1) {
int l, r, x;
read(l), read(r), read(x);
l = max(l, L[x]), r = min(r, R[x]);
if (l <= r) {
newnode(0); link(tot, last);
q[++len] = (node) {l, i - m, tot, id[x]};
q[++len] = (node) {r + 1, i - m, tot, last};
last = tot;
}
}
else {
int x, u, v;
read(x), read(u), read(v);
q[++len] = (node) {x, ++qs, id[u], id[v]};
}
}
sort(q + 1, q + len + 1);
int j = 1;
for (int i = 1; i <= n; i++)
while (i == q[j].pos && j <= len) {
if (q[j].op <= 0) cut(q[j].x), link(q[j].x, q[j].y);
else ans[q[j].op] = query(q[j].x, q[j].y);
j++;
}
for (int i = 1; i <= qs; i++) printf("%d\n", ans[i]);
return 0;
}
P3348 [ZJOI2016]大森林(Link-cut-tree)的更多相关文章
- [BJOI2014]大融合(Link Cut Tree)
[BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知 ...
- P3348 [ZJOI2016]大森林
\(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...
- ●洛谷P3348 [ZJOI2016]大森林
题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...
- 洛谷P3348 [ZJOI2016]大森林 [LCT]
传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...
- [NOI2014] 魔法森林 - Link Cut Tree
[NOI2014] 魔法森林 Description 给定一张图,每条边 \(i\) 的权为 \((a_i,b_i)\), 求一条 \(1 \sim n\) 路径,最小化 \(\max_{i\in P ...
- P3348 [ZJOI2016]大森林(LCT)
Luogu3348 BZOJ4573 LOJ2092 题解 对于每个\(1\)操作建一个虚点,以后的\(0\)操作都连在最近建好的虚点上.这样每次整体嫁接的时候,直接把这个虚点断掉它原来的父亲,再\( ...
- 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)
洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- Link Cut Tree学习笔记
从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...
随机推荐
- .net手动编写Windows服务
1,打开VS,新建一个windows服务程序.项目名称自定义,我这里用的默认名称:Service1 2,打开Service1,按F7查看代码.代码里有三个方法:public Service1().pr ...
- 界面设计中如何增强CTA按钮召唤力?
以下内容由Mockplus(摹客)团队翻译整理,仅供学习交流,Mockplus是更快更简单的原型设计工具. 网页和软件应用之类数字产品的有效交互系统一般是由拥有各种任务和功能的小元素构成.而为创建更加 ...
- MyEclipse不能自动编译解决办法总结
yEclipse在debug模式下,有时会碰到修改的文件无法自动编译的问题,以下的方法可以逐一尝试一下. 1.确保:Project->build automatically 已经被选上. 2.p ...
- Python中ndarray数组切片问题a[-n -x:-y]
先看看如下代码: >>a=np.arange(10)>>a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>a[-7:] array( ...
- 使用JFinal框架连接数据库,实现注册、登录功能
使用JFinal框架连接数据库,实现注册.登录功能 1.在Eclipse中新建Dynamic Web project项目 2.导入jfinal-2.2-bin-with-src.jar.c3p0-0. ...
- jquery中prop()和attr()的区别
相比attr,prop是1.6.1才新出来的,两者从中文意思理解,都是获取/设置属性的方法(attributes和properties).只是,window或document中使用.attr()方法在 ...
- [label][Smarty]Smarty使用心得
Smarty模板引擎,使用smarty好处就是可以实现页面缓存,从而加快了初始化之后的页面访问速度. 某种程度上,smarty模板确保了template页面的代码整洁,避免了HTML标记与PHP的混合 ...
- 2.自己的Github试用过程
打开我个人的Github,我试着做些简单的试用.首先,经过简短描述,我成功创建了一个新的存储库
- 【转】【java源码分析】Map中的hash算法分析
全网把Map中的hash()分析的最透彻的文章,别无二家. 2018年05月09日 09:08:08 阅读数:957 你知道HashMap中hash方法的具体实现吗?你知道HashTable.Conc ...
- [uwp]自定义图形裁切控件
开始之前,先上一张美图.图中的花叫什么,我已经忘了,或者说从来就不知道,总之谓之曰“野花”.只记得花很美,很香,春夏时节,漫山遍野全是她.这大概是七八年前的记忆了,不过她依旧会很准时的在山上沐浴春光, ...