D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Examples
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

#include<cstdio>
#include<algorithm>
typedef double DB;
using namespace std;
const int N=;
double f[N][N];
bool vis[N][N];
int n,m;
double dfs(int w,int b){
if(w<=) return ;
if(b<=) return ;
if(vis[w][b]) return f[w][b];
vis[w][b]=;
double &res=f[w][b];
res=w*1.0/(w+b);
if(b>=){
double tmp=b*1.0/(w+b);
b--;
tmp*=b*1.0/(w+b);
b--;
//取完之后的发生概率:φ*(white+black)
res+=tmp*(w*1.0/(w+b)*dfs(w-,b)+b*1.0/(w+b)*dfs(w,b-));
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
printf("%.9lf",dfs(n,m));
return ;
}

codeforce 148D. Bag of mice[概率dp]的更多相关文章

  1. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  2. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  6. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  7. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  8. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  9. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

随机推荐

  1. [转]pageX、clientX、screenX、offsetX、layerX、x

    参考:http://www.cnblogs.com/xesam/archive/2011/12/08/2280509.html chrome: e.pageX——相对整个页面的坐标e.layerX—— ...

  2. tomcat7项目启动报错java.lang.NoClassDefFoundError: org/apache/juli/logging/LogFactory

     报这个错说明用的是tomcat7 打开myeclipse,Preferentces->MyEclipse->Servers->Tomcat->Tomcat 6.x ,载入 ...

  3. larave框架的安装

    (1)中文官网:http://www.golaravel.com/ (2)composer下载与安装 1:composer网址:getcomposer.org 2:windows下载Composer- ...

  4. e585. Converting Between RGB and HSB Colors

    This example demonstrates how to convert between a color value in RGB (three integer values in the r ...

  5. e655. 混合风格的文本

    This example applies a new font and background color to a part of the text. You can apply styles to ...

  6. (转)x264代码详细阅读之x264.c,common.c,encoder.c

    转自:http://alphamailpost.blog.163.com/blog/static/201118081201281103931932/ x264代码详细阅读第一之x264.chttp:/ ...

  7. html -- <meta name="viewport"/>

    <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scal ...

  8. Codeforces Round #Pi (Div. 2) —— D One-Dimensional Battle Ships

    题目的意思是: 如今有一个长度为n,宽为1的方格,在上面能够放大小为1*a船,然后输入为n,k,a.分别为平地的大小,船的数量,船的长度. 一个叫alice的人已经在地图上摆好了船的位置. 然后bob ...

  9. PHPOffice下PHPWord生成Word2007(docx)使用方法

    要正常使用,下载依赖包: PhpOffice/Common:https://github.com/PHPOffice/Common Zend/Escaper:https://github.com/ze ...

  10. 页面的checkbox框的全选与反选

    if (typeof jQuery == 'undefined') {     alert("请先导入jQuery");} else {    jQuery.extend({    ...