【BZOJ3003】LED

Description

LED屏是由一个庞大的点阵小灯泡组成的,一开始每个小灯泡都不发光。每一行一共有N个小灯泡,依次标号为1~n。现在给定K个点,要求这K个点发光,其余点必须保持熄灭状态。而这块LED屏的操作方式各种奇葩,一共有L种操作方法,第i种表示你能将任意长度恰为A_i的连续一段灯泡的状态取反(灭变亮,亮变灭)。
已知LED屏一共有m行,为了节省时间,请你算出每一行达到目标状态所需的最少操作次数。

Input

    输入文件第一行一个数m,表示LED屏的行数。
    对于LED屏的每一行:
    第一行为n,k,l,意义见上。
    第二行为k个数,表示要求发光的k个点。
    第三行为l个数,表示l种操作方式。

Output

    对于LED屏的每一行:如果无法达到目标状态,输出-1,否则输出最少次数。

Sample Input

2
10 8 2
1 2 3 5 6 7 8 9
3 5
3 2 1
1 2
3

Sample Output

2
-1
【数据规模】
对于100%的数据,T≤10,N≤10000,K≤10,L≤100,1≤A_i≤N。

题解:一开始想网络流想了半天。。。结果是错的。

第一步很常用也很关键,我们将原序列差分,然后就变成了只有2k个关键点需要染黑,而每个操作可以看成是将两个距离为L的格子同时反色。这个过程比较类似于一个最短路的过程,我们将一个关键点染色,此时出现了一个多余的点,我们再将多余点不断反色直到走到了另一个关键点,此时我们可以看做这两个关键点成功配对,而代价就是从这个点走到另一个点的最短路。所以我们先预处理出任意两个关键点之间的最短路,然后DP。

设f[S]表示已经配对的点的状态为S的最小代价。转移时,我只需要们枚举S中最后那个点和谁配对即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
int n,m,K,L;
bool vis[10010];
int op[30],w[30],v[110],dis[10010],f[30][30],g[1<<20],Log[1<<20];
queue<int> q;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
inline void work()
{
n=rd(),K=rd(),L=rd(),m=0;
memset(f,0x3f,sizeof(f)),memset(g,0x3f,sizeof(g));
int i,j,a,u;
for(i=1;i<=K;i++)
{
op[i]=rd();
for(j=1;j<i;j++) if(op[j]==op[i]) break;
if(j==i) vis[op[i]]^=1,vis[op[i]+1]^=1;
}
for(i=1;i<=n+1;i++) if(vis[i]) w[m++]=i,vis[i]=0;
for(i=1;i<=L;i++) v[i]=rd();
sort(w,w+m);
for(i=0;i<m;i++) Log[1<<i]=i;
for(i=0;i<m;i++)
{
memset(dis,0x3f,sizeof(dis));
q.push(w[i]),dis[w[i]]=0;
while(!q.empty())
{
u=q.front(),q.pop();
for(j=1;j<=L;j++)
{
if(u+v[j]<=n+1&&dis[u+v[j]]==0x3f3f3f3f) dis[u+v[j]]=dis[u]+1,q.push(u+v[j]);
if(u-v[j]>=1&&dis[u-v[j]]==0x3f3f3f3f) dis[u-v[j]]=dis[u]+1,q.push(u-v[j]);
}
}
for(j=0;j<m;j++) if(i!=j) f[i][j]=dis[w[j]];
}
g[0]=0;
for(i=1;i<(1<<m);i++)
{
a=Log[i&-i];
for(j=a+1;j<m;j++) if((i>>j)&1) g[i]=min(g[i],g[i^(1<<j)^(1<<a)]+f[j][a]);
}
printf("%d\n",(g[(1<<m)-1]==0x3f3f3f3f)?-1:g[(1<<m)-1]);
}
int main()
{
int T=rd();
while(T--) work();
return 0;
}//2 10 8 2 1 2 3 5 6 7 8 9 3 5 3 2 1 1 2 3
//1 10 3 2 1 1 10 10 8

【BZOJ3003】LED BFS+状压DP的更多相关文章

  1. #12【BZOJ3003】LED BFS+状压DP

    题解: 看到区间修改先想一下差分 这题用差分是为了分析问题 现在的问题就变成了 原序列全为0,要使得特定的k个点变为1,每个操作改变x,y+1 然后我们会发现 对于二元组a,b我们要修改它,实际上是在 ...

  2. hdu 4856 Tunnels (bfs + 状压dp)

    题目链接 The input contains mutiple testcases. Please process till EOF.For each testcase, the first line ...

  3. HDU-4856 Tunnels (BFS+状压DP)

    Problem Description Bob is travelling in Xi’an. He finds many secret tunnels beneath the city. In hi ...

  4. 孤岛营救问题(BFS+状压DP)

    孤岛营救问题 https://www.luogu.org/problemnew/show/P4011 用状压DP标记拿到钥匙的数量 #include<iostream> #include& ...

  5. QDUOJ 来自xjy的签到题(bfs+状压dp)

    来自xjy的签到题   Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...

  6. HDU-3681-Prison Break(BFS+状压DP+二分)

    Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...

  7. 【BZOJ 3049】【USACO2013 Jan】Island Travels BFS+状压DP

    这是今天下午的互测题,只得了60多分 分析一下错因: $dis[i][j]$只记录了相邻的两个岛屿之间的距离,我一开始以为可以,后来$charge$提醒我有可能会出现来回走的情况,而状压转移就一次,无 ...

  8. CodeForces 907E Party(bfs+状压DP)

    Arseny likes to organize parties and invite people to it. However, not only friends come to his part ...

  9. HDU 3247 Resource Archiver (AC自动机+BFS+状压DP)

    题意:给定 n 个文本串,m个病毒串,文本串重叠部分可以合并,但合并后不能含有病毒串,问所有文本串合并后最短多长. 析:先把所有的文本串和病毒都插入到AC自动机上,不过标记不一样,可以给病毒标记-1, ...

随机推荐

  1. 轻量级ORM框架Dapper应用六:Dapper支持存储过程

    在Entity Framework中讲解了EF如何支持存储过程,同样,Dapper也支持存储过程,只需要在Query()方法的CommandType中标记使用的是存储过程就可以了.在Users表上面创 ...

  2. oracle权限详解

    一.权限分类:系统权限:系统规定用户使用数据库的权限.(系统权限是对用户而言). 实体权限:某种权限用户对其它用户的表或视图的存取权限.(是针对表或视图而言的). 二.系统权限管理:1.系统权限分类: ...

  3. [oracle] oracle的三种密码验证机制以及在windows和linux下的不同启动过程

    oracle数据库的密码验证机制: ① 操作系统验证 拥有SYSDBA和SYSOPER的用户用该方式验证此时数据库无需启动,也无需开启监听和实例服务. 要求:本地组ora_dba中有该操作系统的登录用 ...

  4. 《FPGA全程进阶---实战演练》第三章之PCB设计之电感、磁珠和零欧姆电阻

    2.电感.磁珠和零欧姆电阻的区别 电感:电感是储能元件,多用于电源滤波回路.LC振荡电路.中低频滤波电路等,其应用频率很少超过50MHz.对电感而言,其感抗值和频率成正比.XL = 2πfL来说明,其 ...

  5. 25个非常实用的jQuery/CSS3应用组件

    今天分享25款功能十分强大的jQuery/CSS3应用插件,欢迎收藏. 1.jQuery水晶样式下拉导航 这是一款非常不错的jQuery多功能下拉菜单插件,菜单外观呈水晶样式,晶莹剔透,功能丰富,包含 ...

  6. android LayoutInflater 笔记

    LayoutInflater类用于查找布局文件并实例化.用于动态将布局加入界面中. 参考链接 http://blog.csdn.net/guolin_blog/article/details/1292 ...

  7. QSignalMapper Class

    /************************************************************************************** * QT QSignal ...

  8. 时间操作(struct tm、time_t)求指定日期 前n天的日期

    1.在标准C/C++中,我们可通过tm结构来获得日期和时间,tm结构在time.h中的定义如下: #ifndef _TM_DEFINED struct tm { int tm_sec; /* 秒–取值 ...

  9. 如何Request客户端的传值的Data

    我们在做B/S的项目,客户端向服务端传值的时候,一般都是request接受. Request常用三个接受方式为:Request.QueryString,Request.Form,Request.Par ...

  10. UVa 10450 - World Cup Noise

    题目:构造一个01串,使得当中的1不相邻,问长度为n的串有多少中. 分析:数学,递推数列. 设长度为n的串有n个.则有递推关系:f(n)= f(n-1)+ f(n-2): 长度为n的结束可能是0或者1 ...