ZOJ3724 Delivery(树状数组??)
题意:给你一个有向图,第一类边是从第i个点到第i+1个点的,还有多出来的m条二类边,是从u到v的,同样是有向的。然后你要处理询问,从u到v经过最多一次二类边的最短距离是多少。
题目我觉得是神题,然后看了网上的一些神解法,其中一个非常neatly,在此说下感想。
首先我们考虑的是(u<v)的所有询问,那么我们可以发现,这个时候所有二类边(u>v)的,是不可能用到的。然后我们想,从u到v的最短距离,就是利用u+1~v中的某个起点的二类边到达某个点k(u<k<=v),所以在计算的时候我们只需要知道这些边里能节省的距离的最小值就可以了。所以当我们把询问离线,我们优先处理的是u大v小的边,然后对于每天边,我们可以更新一下对应的节省了的距离的最小值,然后询问的时候就是两点间的距离+节省距离的最小值。
同样,在处理(u>v)的询问的时候,所有的二类边(u<v)也是不会用到的。然后在询问(v,u)的时候,我们也是要用到的所以在u之后为起点的边,以及以u为起点,终点在v前的边。但是这个时候询问就有点坑爹了,因为我们是从u到达u1,经过一条u1->v1的边,然后从v1到达v,区间顺序如下:(v1,v,u,u1),那么花费究竟什么时候最少呢?我们如何利用u1->v1这条边去更新呢?不难发现,我们实际上的距离其实就是 dis(u1,v1)+cost(u1,v1)-dis(v,u),所以在询问的时候u,v是不起作用的,相当于一个常数,我们需要的只是dis(u1,v1)+cost(u1,v1)最小,所以更新的时候只需要维护这个就好了。至此圆满结束。
值得注意的是bit数组的维护以及更新的顺序。
这道题叫我做我肯定做不会,但是这种离线的思想我觉得太重要了,很多看上去解决不了的数据结构归结起来就是没有合适的离线处理。
#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
#define maxn 100000
#define maxm 200000
#define lowbit(k) k&(-k)
using namespace std; struct Node
{
int u,v;
ll d;
int idx; int kind;
bool operator < (const Node &b) const{
if (u == b.u){
if (v == b.v) return kind < b.kind;
else return v < b.v;
}
else return u > b.u;
}
}seg[maxm*2];
int top;
ll d[maxn + 50];
ll sd[maxn + 50];
ll ans[maxm + 50];
ll n, m; ll bit[maxn + 50]; void upd(int x, ll val){
while (x <= n){
bit[x] = min(bit[x], val);
x += lowbit(x);
}
} ll query(int x){
ll res = (1LL) << 60;
while (x){
res = min(res, bit[x]);
x -= lowbit(x);
}
return res;
} int main()
{
while (cin >> n >> m){
for (int i = 1; i <= n - 1; i++){
scanf("%lld", &d[i]);
}
sd[1] = 0;
for (int i = 1; i <= n - 1; i++){
sd[i + 1] = sd[i] + d[i];
}
int ui, vi; ll qi; top = 0;
for (int i = 0; i < m; i++){
scanf("%d%d%lld", &seg[top].u, &seg[top].v, &seg[top].d);
seg[top].idx = i; seg[top].kind = 0;
top++;
}
int q; cin >> q;
for (int i = 0; i < q; i++){
scanf("%d%d", &seg[top].u, &seg[top].v);
seg[top].kind = 1; seg[top].idx = i; top++;
}
sort(seg, seg + top);
memset(ans, 0, sizeof(ans));
memset(bit, 0, sizeof(bit));
for (int i = 0; i < top; i++){
if (seg[i].kind == 0 && seg[i].u < seg[i].v){
upd(seg[i].v, seg[i].d - (sd[seg[i].v] - sd[seg[i].u])); // 节省距离的相反数
}
if (seg[i].kind == 1 && seg[i].u < seg[i].v){
ans[seg[i].idx] = query(seg[i].v) + sd[seg[i].v] - sd[seg[i].u];
}
}
for (int i = 1; i <= n; i++) bit[i] = (1LL << 60);
for (int i = 0; i < top; i++){
if (seg[i].kind == 0 && seg[i].u>seg[i].v){
upd(seg[i].v, seg[i].d + sd[seg[i].u] - sd[seg[i].v]);
}
if (seg[i].kind == 1 && seg[i].u>seg[i].v){
ans[seg[i].idx] = query(seg[i].v) - (sd[seg[i].u] - sd[seg[i].v]);
}
}
for (int i = 0; i < q; i++){
printf("%lld\n", ans[i]);
}
}
return 0;
}
ZOJ3724 Delivery(树状数组??)的更多相关文章
- ZOJ 3724 Delivery 树状数组好题
虽然看起来是求最短路,但因为条件的限制,可以转化为区间求最小值. 对于一条small path [a, b],假设它的长度是len,它对区间[a, b]的影响就是:len-( sum[b]-sum[a ...
- BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]
1103: [POI2007]大都市meg Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2221 Solved: 1179[Submit][Sta ...
- bzoj1878--离线+树状数组
这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...
- codeforces 597C C. Subsequences(dp+树状数组)
题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...
- BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2545 Solved: 1419[Submit][Sta ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
- 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组
E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...
- 【BZOJ-3881】Divljak AC自动机fail树 + 树链剖分+ 树状数组 + DFS序
3881: [Coci2015]Divljak Time Limit: 20 Sec Memory Limit: 768 MBSubmit: 508 Solved: 158[Submit][Sta ...
随机推荐
- jquery的prop()和attr()
jQuery1.6以后prop()和attr()的应用场景如下: 第一原则:只添加属性名称该属性就会立即生效应该使用prop(); 第二原则:只存在true/false的属性应该使用prop(); 设 ...
- oracle 事务处理 注意事项(笔记)
事务:一个独立的逻辑工作单元.它有特定的一系列必须作为一个整体一起成功或者失败的SQL语句组成.是一个要么全有要么全无,很个性的一个东东. 事务的四大属性——ACID属性:原子性(atomicity) ...
- wifi链接配置
linux 命令行配置wlan无线网卡 无线网卡配置此页由Linux Wiki日(星期四) 09:28的工作基础上.本文介绍在Linux命令行界面中手动配置无线网卡的方法.目前流行的多数发行版都支持用 ...
- 关于自定义的NavigationBar
系统的NavigationBar局限太大,而且现在我要做的navigationBar需要四个按钮,一个Label,一个ImageView,所以不能用系统默认的. 刚刚咨询了一个高手,她的建议是,将系统 ...
- SCSF智能客户端学习笔记(一)
什么是智能客户端 要了解智能客户端,首先要认识瘦客户端技术和胖客户端技术各自的优缺点. 对于前者,典型的应用就是使用浏览器,通过输入URL远程访问服务端,并向服务端发送命令,获取服务端的资源,然后在客 ...
- Linux rsync 同步
rsync 是一个快速增量文件传输工具,它可以用于在同一主机备份内部的备分,我们还可以把它作为不同主机网络备份工具之用.本文主要讲述的是如何自架rsync服务器,以实现文件传输.备份和镜像.相对tar ...
- Python实现DBScan
Python实现DBScan 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 ...
- iOS 进阶 第十六天(0419)
0419 任何view默认不支持多点触控,有一个属性设置Multiple Touch,设置为Yes即可支持多点触控 触摸移动一个view,让view也跟着动代码 关于触摸的一些解释: 注意:touch ...
- 使用C语言在Win控制台中实现指定位置输出
在古老的Turbo C中有个GotoXY可以让你在指定坐标中输出文字,可恨的是我看过的C语言书籍,有一半都是关于它的.我现在用着Windows系统,不可能还让我去写着DOS程序啊,起码也得从Win控制 ...
- Microsoft Dynamics CRM 2013 安装过程图解及安装序列号
Microsoft Dynamics CRM 2013 安装过程 图解 在安装前,先持一下SQL配置管理,将相关的服务打开.(由于在虚拟机里,许多服务需要时才会打开,像Reporting Serv ...