题意:给你一个有向图,第一类边是从第i个点到第i+1个点的,还有多出来的m条二类边,是从u到v的,同样是有向的。然后你要处理询问,从u到v经过最多一次二类边的最短距离是多少。

题目我觉得是神题,然后看了网上的一些神解法,其中一个非常neatly,在此说下感想。

首先我们考虑的是(u<v)的所有询问,那么我们可以发现,这个时候所有二类边(u>v)的,是不可能用到的。然后我们想,从u到v的最短距离,就是利用u+1~v中的某个起点的二类边到达某个点k(u<k<=v),所以在计算的时候我们只需要知道这些边里能节省的距离的最小值就可以了。所以当我们把询问离线,我们优先处理的是u大v小的边,然后对于每天边,我们可以更新一下对应的节省了的距离的最小值,然后询问的时候就是两点间的距离+节省距离的最小值。

同样,在处理(u>v)的询问的时候,所有的二类边(u<v)也是不会用到的。然后在询问(v,u)的时候,我们也是要用到的所以在u之后为起点的边,以及以u为起点,终点在v前的边。但是这个时候询问就有点坑爹了,因为我们是从u到达u1,经过一条u1->v1的边,然后从v1到达v,区间顺序如下:(v1,v,u,u1),那么花费究竟什么时候最少呢?我们如何利用u1->v1这条边去更新呢?不难发现,我们实际上的距离其实就是 dis(u1,v1)+cost(u1,v1)-dis(v,u),所以在询问的时候u,v是不起作用的,相当于一个常数,我们需要的只是dis(u1,v1)+cost(u1,v1)最小,所以更新的时候只需要维护这个就好了。至此圆满结束。

值得注意的是bit数组的维护以及更新的顺序。

这道题叫我做我肯定做不会,但是这种离线的思想我觉得太重要了,很多看上去解决不了的数据结构归结起来就是没有合适的离线处理。

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
#define maxn 100000
#define maxm 200000
#define lowbit(k) k&(-k)
using namespace std; struct Node
{
int u,v;
ll d;
int idx; int kind;
bool operator < (const Node &b) const{
if (u == b.u){
if (v == b.v) return kind < b.kind;
else return v < b.v;
}
else return u > b.u;
}
}seg[maxm*2];
int top;
ll d[maxn + 50];
ll sd[maxn + 50];
ll ans[maxm + 50];
ll n, m; ll bit[maxn + 50]; void upd(int x, ll val){
while (x <= n){
bit[x] = min(bit[x], val);
x += lowbit(x);
}
} ll query(int x){
ll res = (1LL) << 60;
while (x){
res = min(res, bit[x]);
x -= lowbit(x);
}
return res;
} int main()
{
while (cin >> n >> m){
for (int i = 1; i <= n - 1; i++){
scanf("%lld", &d[i]);
}
sd[1] = 0;
for (int i = 1; i <= n - 1; i++){
sd[i + 1] = sd[i] + d[i];
}
int ui, vi; ll qi; top = 0;
for (int i = 0; i < m; i++){
scanf("%d%d%lld", &seg[top].u, &seg[top].v, &seg[top].d);
seg[top].idx = i; seg[top].kind = 0;
top++;
}
int q; cin >> q;
for (int i = 0; i < q; i++){
scanf("%d%d", &seg[top].u, &seg[top].v);
seg[top].kind = 1; seg[top].idx = i; top++;
}
sort(seg, seg + top);
memset(ans, 0, sizeof(ans));
memset(bit, 0, sizeof(bit));
for (int i = 0; i < top; i++){
if (seg[i].kind == 0 && seg[i].u < seg[i].v){
upd(seg[i].v, seg[i].d - (sd[seg[i].v] - sd[seg[i].u])); // 节省距离的相反数
}
if (seg[i].kind == 1 && seg[i].u < seg[i].v){
ans[seg[i].idx] = query(seg[i].v) + sd[seg[i].v] - sd[seg[i].u];
}
}
for (int i = 1; i <= n; i++) bit[i] = (1LL << 60);
for (int i = 0; i < top; i++){
if (seg[i].kind == 0 && seg[i].u>seg[i].v){
upd(seg[i].v, seg[i].d + sd[seg[i].u] - sd[seg[i].v]);
}
if (seg[i].kind == 1 && seg[i].u>seg[i].v){
ans[seg[i].idx] = query(seg[i].v) - (sd[seg[i].u] - sd[seg[i].v]);
}
}
for (int i = 0; i < q; i++){
printf("%lld\n", ans[i]);
}
}
return 0;
}

ZOJ3724 Delivery(树状数组??)的更多相关文章

  1. ZOJ 3724 Delivery 树状数组好题

    虽然看起来是求最短路,但因为条件的限制,可以转化为区间求最小值. 对于一条small path [a, b],假设它的长度是len,它对区间[a, b]的影响就是:len-( sum[b]-sum[a ...

  2. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  3. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

  4. codeforces 597C C. Subsequences(dp+树状数组)

    题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...

  5. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  6. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  7. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

  8. 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组

    E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  9. 【BZOJ-3881】Divljak AC自动机fail树 + 树链剖分+ 树状数组 + DFS序

    3881: [Coci2015]Divljak Time Limit: 20 Sec  Memory Limit: 768 MBSubmit: 508  Solved: 158[Submit][Sta ...

随机推荐

  1. iOS学习之UI可视化编程-XIB

    一.Interface Builder可视化编程 1.Interface Builder简介: GUI:图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是 ...

  2. [转]What’s Behind Ericsson’s OpenWebRTC Project?

    [转]What’s Behind Ericsson’s OpenWebRTC Project? http://www.tuicool.com/articles/z6rAVrJ Ericsson’s O ...

  3. 浅谈dynamic的简单使用用法

    今天看了博客园里面的dynamic用法,我犹豫从来没接触过,今天恶补了一下,把我对dynamic的认识分享了出来,大家一起学习. Visual C# 2010 引入了一个新类型 dynamic. 该类 ...

  4. 如何安装altium designer 10

    http://jingyan.baidu.com/article/4dc4084881e2bdc8d946f1f3.html

  5. 树莓派最简易Wifi配置

    树莓派最简易Wifi配置 相信我,连博客都会偷懒写个最简易给你看 前提,只有一根网线没有网络的前提下进行的. 基于Win10系统和树莓派2015-05-05-raspbian-wheezy.img测试 ...

  6. mysql安装/启动报错汇总

    2016/9/6补充 初始化报错: # /usr/local/mysql/scripts/mysql_install_db --user=mysql --basedir=/usr/local/mysq ...

  7. 小组开发项目NABC分析

    我们团队的开发项目为:重量解锁 是根据重力感应实现手机的解锁方式,在传统滑屏的基础上我们想增添新的形式,实现用户用一组动作就能实现手机解锁功能,更加方便,炫酷. NABC模型 1.N:我们的创意在使用 ...

  8. 玩耍Hibernate之缓存

    2.在持久化层,对象分为哪些状态?分别列出来. 答:瞬时态(Transient).持久态(Persistent).脱管态(Detached). 瞬时态(Transient) 是对象是创建时,瞬时对象在 ...

  9. jQuery中ready与load事件

    jQuery中ready与load事件(来自慕课网) jQuery有3种针对文档加载的方法 $(document).ready(function() { // ...代码... }) //docume ...

  10. 向Array中添加冒泡排序

    冒泡排序思想 通过在无序区的相邻元素的比较和替换,使较小的元素浮到最上面. 冒泡排序实现 Function.prototype.method = function(name, func){ this. ...