name: "VGG_ILSVRC_19_layer"

layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
 
  image_data_param {
    batch_size: 12
    source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"
    root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"
  }
} layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
  }
  image_data_param {
    batch_size: 10
    source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"
    root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"
  }
} layer {
  bottom:"data"
  top:"conv1_1"
  name:"conv1_1"
  type:"Convolution"
  convolution_param {
    num_output:64
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv1_1"
  top:"conv1_1"
  name:"relu1_1"
  type:"ReLU"
}
layer {
  bottom:"conv1_1"
  top:"conv1_2"
  name:"conv1_2"
  type:"Convolution"
  convolution_param {
    num_output:64
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv1_2"
  top:"conv1_2"
  name:"relu1_2"
  type:"ReLU"
}
layer {
  bottom:"conv1_2"
  top:"pool1"
  name:"pool1"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size:2
    stride:2
  }
}
layer {
  bottom:"pool1"
  top:"conv2_1"
  name:"conv2_1"
  type:"Convolution"
  convolution_param {
    num_output:128
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv2_1"
  top:"conv2_1"
  name:"relu2_1"
  type:"ReLU"
}
layer {
  bottom:"conv2_1"
  top:"conv2_2"
  name:"conv2_2"
  type:"Convolution"
  convolution_param {
    num_output:128
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv2_2"
  top:"conv2_2"
  name:"relu2_2"
  type:"ReLU"
}
layer {
  bottom:"conv2_2"
  top:"pool2"
  name:"pool2"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size:2
    stride:2
  }
}
layer {
  bottom:"pool2"
  top:"conv3_1"
  name: "conv3_1"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_1"
  top:"conv3_1"
  name:"relu3_1"
  type:"ReLU"
}
layer {
  bottom:"conv3_1"
  top:"conv3_2"
  name:"conv3_2"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_2"
  top:"conv3_2"
  name:"relu3_2"
  type:"ReLU"
}
layer {
  bottom:"conv3_2"
  top:"conv3_3"
  name:"conv3_3"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_3"
  top:"conv3_3"
  name:"relu3_3"
  type:"ReLU"
}
layer {
  bottom:"conv3_3"
  top:"conv3_4"
  name:"conv3_4"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_4"
  top:"conv3_4"
  name:"relu3_4"
  type:"ReLU"
}
layer {
  bottom:"conv3_4"
  top:"pool3"
  name:"pool3"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom:"pool3"
  top:"conv4_1"
  name:"conv4_1"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_1"
  top:"conv4_1"
  name:"relu4_1"
  type:"ReLU"
}
layer {
  bottom:"conv4_1"
  top:"conv4_2"
  name:"conv4_2"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_2"
  top:"conv4_2"
  name:"relu4_2"
  type:"ReLU"
}
layer {
  bottom:"conv4_2"
  top:"conv4_3"
  name:"conv4_3"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_3"
  top:"conv4_3"
  name:"relu4_3"
  type:"ReLU"
}
layer {
  bottom:"conv4_3"
  top:"conv4_4"
  name:"conv4_4"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_4"
  top:"conv4_4"
  name:"relu4_4"
  type:"ReLU"
}
layer {
  bottom:"conv4_4"
  top:"pool4"
  name:"pool4"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom:"pool4"
  top:"conv5_1"
  name:"conv5_1"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_1"
  top:"conv5_1"
  name:"relu5_1"
  type:"ReLU"
}
layer {
  bottom:"conv5_1"
  top:"conv5_2"
  name:"conv5_2"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_2"
  top:"conv5_2"
  name:"relu5_2"
  type:"ReLU"
}
layer {
  bottom:"conv5_2"
  top:"conv5_3"
  name:"conv5_3"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_3"
  top:"conv5_3"
  name:"relu5_3"
  type:"ReLU"
}
layer {
  bottom:"conv5_3"
  top:"conv5_4"
  name:"conv5_4"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_4"
  top:"conv5_4"
  name:"relu5_4"
  type:"ReLU"
}
layer {
  bottom:"conv5_4"
  top:"pool5"
  name:"pool5"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom:"pool5"
  top:"fc6_"
  name:"fc6_"
  type:"InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
layer {
  bottom:"fc6_"
  top:"fc6_"
  name:"relu6"
  type:"ReLU"
}
layer {
  bottom:"fc6_"
  top:"fc6_"
  name:"drop6"
  type:"Dropout"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  bottom:"fc6_"
  top:"fc7"
  name:"fc7"
  type:"InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
layer {
  bottom:"fc7"
  top:"fc7"
  name:"relu7"
  type:"ReLU"
}
layer {
  bottom:"fc7"
  top:"fc7"
  name:"drop7"
  type:"Dropout"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  bottom:"fc7"
  top:"fc8_"
  name:"fc8_"
  type:"InnerProduct"
  inner_product_param {
    num_output: 27
  }
} layer {
  name: "sigmoid"
  type: "Sigmoid"
  bottom: "fc8_"
  top: "fc8_"
}  layer {
   name: "accuracy"
   type: "Accuracy"
   bottom: "fc8_"
   bottom: "label"
   top: "accuracy"
   include {
     phase: TEST
   }
 } layer {
  name: "loss"
  type: "EuclideanLoss"
  bottom: "fc8_"
  bottom: "label"
  top: "loss"
}

VGG_19 train_vali.prototxt file的更多相关文章

  1. 如何才能将Faster R-CNN训练起来?

    如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installa ...

  2. SSD框架训练自己的数据集

    SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如 ...

  3. Faster-RCNN 训练自己的数据

    在前一篇随笔中,数据制作成了VOC2007格式,可以用于Faster-RCNN的训练. 1.针对数据的修改 修改datasets\VOCdevkit2007\VOCcode\VOCinit.m,我只做 ...

  4. caffe drawnet.py 用Python画网络框架

    在caffe中可以使用draw_net.py轻松地绘制卷积神经网络(CNN,Convolutional Neural Networks)的架构图.这个工具对于我们理解.学习甚至查错都有很大的帮助. 1 ...

  5. caffe实际运行中遇到的问题

    https://blog.csdn.net/u010417185/article/details/52649178 1.均值计算是否需要统一图像的尺寸? 在图像计算均值时,应该先统一图像的尺寸,否则会 ...

  6. [OpenCV] Install OpenCV 3.3 with DNN

    OpenCV 3.3 Aug 3, 2017 OpenCV 3.3 has been released with greatly improved Deep Learning module and l ...

  7. [PyImageSearch] Ubuntu16.04 使用深度学习和OpenCV实现物体检测

    上一篇博文中讲到如何用OpenCV实现物体分类,但是接下来这篇博文将会告诉你图片中物体的位置具体在哪里. 我们将会知道如何使用OpenCV‘s的dnn模块去加载一个预训练的物体检测网络,它能使得我们将 ...

  8. 【PyImageSearch】Ubuntu16.04使用OpenCV3.3.0实现图像分类

    这篇博文将会展示如何采用一个预训练的深度学习网络(模型)在ImageNet的数据集并把它当作输入图像. 首先说明,运行环境为Ubuntu16.04(或者MacOS),windows暂不支持,已经编译好 ...

  9. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

随机推荐

  1. C# Delete Url Cookie

    public static void DeleteCookieFile(Uri url) { string path = Environment.GetFolderPath(Environment.S ...

  2. C# 跨线程操作控件(简洁)

                                              C# 跨线程操作控件 .net 原则上禁止跨线程访问控件,因为这样可能造成错误的发生.解决此问题的方法有两个: 第一 ...

  3. SVG 2D入门5 - 颜色的表示

    SVG和canvas中是一样的,都是使用标准的HTML/CSS中的颜色表示方法,这些颜色都可以用于fill和stroke属性.基本有下面这些定义颜色的方式:1. 颜色名字: 直接使用颜色名字red, ...

  4. 12-27cell常用的属性

    1.创建cell //    创建一个cell并且设置cell的风格 UITableViewCell *cell  = [[UITableViewCell alloc]initWithStyle:UI ...

  5. 针对电信乌龙事件的深度测试: 广州电信错误将深圳地区189的号码在3G升级4G申请时从广州网厅发货,造成深圳用户收到4G卡后无法激活,深圳电信找不到订单

    广州电信错误将深圳地区189的3G升级4G申请从中国电信广州网厅发货(智能卡号:8986 1114 9002 0851  742X S  电话号码 189),造成用户收到4G卡后无法激活,深圳电信找不 ...

  6. 您不能在64-位可执行文件上设置DEP属性?

    我是为dllhost.exe设置DEP时遇到了同样的情况.你需要选择64位系统对应的程序.64位系统:C:\Windows\SysWOW64\dllhost.exe32位系统:C:\Windows\S ...

  7. JQuery源码分析(三)

    jQuery中ready与load事件 jQuery有3种针对文档加载的方法 $(document).ready(function() { // ...代码... }) //document read ...

  8. JS 日历控件

    http://www.cnblogs.com/yank/archive/2008/08/14/1267746.html http://code.google.com/p/lhgcalendar/dow ...

  9. CentOS 7.0 安装go 1.3.1

    1.下载go安装包 golang中国上下载 2. 解压 tar -zxf go1.3.1.linux-amd64.tar.gz -C /usr/local/ 3. 修改 etc/profile 文件在 ...

  10. Python 如何跳出多重循环

    Python 如何跳出多重循环 抛异常 return